Diabetes is a huge health burden in the United States and around the world, both in decreased quality of life and in cost. This proposal addresses basic mechanisms controlling the function of pancreatic p-cells. Greater knowledge will facilitate the preservation of p-cell function and the development of safe and effective anti-diabetic therapies. The MAP kinases (MAPKs) ERK1 and ERK2 participate in the signal transduction mechanisms that integrate nutrient and hormonal inputs to the maintenance of insulin gene transcription in p-cells. The focus of this proposal is the elucidation of the functions of ERK1/2 in the normal physiology of pancreatic p-cells and in p-cell dysfunction. ERK1/2 enhance the activity of factors essential for insulin gene transcription;inhibiting ERK1/2 activity impairs insulin gene transcription. ERK1/2 are also implicated in multiple conditions in which p-cell function is impaired, including hyperglycemia and immunosuppression. High concentrations of circulating glucose that can occur in diabetes cause prolonged hyperactivationof ERK1/2 and formation of ERK1/2-sensitive transcription factor complexes associated with decreased insulin gene transcription;thus, ERK1/2 also contribute to the reduced ability of p-cells to produce insulin during prolonged hyperglycemia. We have demonstrated that at least six transcription factors that regulate insulin gene transcription are ERK1/2targets in p-cells including PDX-1, Beta2, MafA, NFAT, and C/EBP-p.
The aims are to define mechanisms by which ERK1/2 enhance transcription, to define mechanisms by which ERK1/2 inhibit transcription, and to determine the impact on p-cells of interactions of ERK1/2 with PEA-15, a protein over-expressed in type II diabetes. MafA and NFAT form an ERK1/2-dependent complex associated with increased insulin gene promoter activity. We will examine how ERK1/2 regulate their activities and explore the role of ERK1/2 in recruitment of coactivators and other proteins to transcription factor complexes. Inhibition of ERK1/2 in p-cells chronically exposed to high glucose results in a marked increase inmRNA encoding the stress-induced C/EBP homologous factor CHOP-10 (GADD153). We will define howERK1/2 inhibit expression of the CHOP-10 mRNA and explore its functions in p-cells. Exposure of p-cells to high glucose for more than 12 h inhibits insulin gene transcription in part due to induction of C/EBP-p. Blocking ERK1/2 disrupts a DNA-bound C/EBP-p complex that inhibits insulin gene transcription. Thus, we will determine mechanisms of C/EBP-p regulation by ERK1/2. PEA-15 is overexpressed in type 2 diabetes, causes hyperglycemia when expressed in mice, and impaired insulin release in MIN6 cells. PEA-15 binds directly to ERK1/2 and prevents their nuclear accumulation in fibroblasts. We will determine if overexpression of PEA-15 interferes with ERK1/2 function in p-cells and if ERK1/2 localization affects the functions of their substrates.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-EMNR-G (03))
Program Officer
Appel, Michael C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Kalwat, Michael A; Cobb, Melanie H (2017) Mechanisms of the amplifying pathway of insulin secretion in the ? cell. Pharmacol Ther 179:17-30
Guerra, Marcy L; Kalwat, Michael A; McGlynn, Kathleen et al. (2017) Sucralose activates an ERK1/2-ribosomal protein S6 signaling axis. FEBS Open Bio 7:174-186
Kalwat, Michael A; Wichaidit, Chonlarat; Nava Garcia, Alejandra Y et al. (2016) Insulin promoter-driven Gaussia luciferase-based insulin secretion biosensor assay for discovery of ?-cell glucose-sensing pathways. ACS Sens 1:1208-1212
Kalwat, Michael A; Huang, Zhimin; Wichaidit, Chonlarat et al. (2016) Isoxazole Alters Metabolites and Gene Expression, Decreasing Proliferation and Promoting a Neuroendocrine Phenotype in ?-Cells. ACS Chem Biol 11:1128-36
Wauson, Eric M; Guerra, Marcy L; Dyachok, Julia et al. (2015) Differential Regulation of ERK1/2 and mTORC1 Through T1R1/T1R3 in MIN6 Cells. Mol Endocrinol 29:1114-22
Lawrence, Michael C; Borenstein-Auerbach, Nofit; McGlynn, Kathleen et al. (2015) NFAT targets signaling molecules to gene promoters in pancreatic ?-cells. Mol Endocrinol 29:274-88
Guerra, Marcy L; Wauson, Eric M; McGlynn, Kathleen et al. (2014) Muscarinic control of MIN6 pancreatic ? cells is enhanced by impaired amino acid signaling. J Biol Chem 289:14370-9
Chamberlain, Chester E; Scheel, David W; McGlynn, Kathleen et al. (2014) Menin determines K-RAS proliferative outputs in endocrine cells. J Clin Invest 124:4093-101
Wauson, Eric M; Dbouk, Hashem A; Ghosh, Anwesha B et al. (2014) G protein-coupled receptors and the regulation of autophagy. Trends Endocrinol Metab 25:274-82
Osborne, Jihan K; Guerra, Marcy L; Gonzales, Joshua X et al. (2014) NeuroD1 mediates nicotine-induced migration and invasion via regulation of the nicotinic acetylcholine receptor subunits in a subset of neural and neuroendocrine carcinomas. Mol Biol Cell 25:1782-92

Showing the most recent 10 out of 31 publications