The integrity and function of the epithelial lining of the gastrointestinal tract, and thus human health, depend upon appropriate cellular proliferation and apoptosis, as part of the response to injury or inflammation. These processes are normally tightly regulated by an array of signaling pathways driven by cell surface receptors and their cognate ligands;aberrations in this control contribute to numerous disease states from ulceration to tumorigenesis. This project is focused on understanding the roles played by tumor necrosis factor (TNF) and its receptors (TNFR1 &TNFR2) in coordinating proliferation and apoptosis during intestinal epithelial injury and inflammation. Our studies to date have described novel mechanisms of TNFR activation and downstream signal transduction in intestinal epithelial cells, including TNF-stimulated cell survival responses such as Raf-1 regulation of nuclear factor- (NF-) ?B and Src-mediated transactivation of epidermal growth factor receptor (EGFR) &ErbB2. Because these receptor systems have been linked to both pathogenesis and therapeutics, defining the mechanisms of TNFR signal transduction and the role of EGFR transactivation in the gastrointestinal tract is important to understand the clinical implications, and potential applications, of these responses. Our published results from the current funding period, combined with our Preliminary Data included in this proposal, demonstrate that TNFR1 processing, TNFR2 expression, and transactivation of EGFR/ErbB2 help to maintain an intact intestinal epithelial monolayer by reducing apoptosis and promoting proliferation. Therefore, studies described in this application will test the hypothesis that during acute injury and chronic inflammation, TNF stimulates TNFR processing and signal transduction, including transactivation of EGFR/ErbB2, to promote epithelial cell monolayer integrity and health of the host.
The Specific Aims are to: (1) Define the role of TNFR interactions and processing in intestinal epithelial cell response to injury in vitro and in vivo, (2) Determine the role of TNFR1 downstream anti-apoptotic signal transduction pathways in colon epithelium following acute and recurrent injury, and (3) Determine the effects of EGFR/ErbB2 on injury and repair mechanisms in acute and chronic inflammation in the colon. The proposed studies will significantly enhance our understanding of the roles and mechanisms of action of TNF-induced signaling on intestinal epithelial health, with implications for a number of human gastrointestinal disorders.

Public Health Relevance

These studies are designed to increase the understanding of repair mechanisms of the gastrointestinal tract following injury and during inflammation. They have important relevance to the treatment and prevention of a number of human gastrointestinal disorders including inflammatory bowel disease.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Carrington, Jill L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Children's Hospital of Los Angeles
Los Angeles
United States
Zip Code
Frey, Mark R; Brent Polk, D (2014) ErbB receptors and their growth factor ligands in pediatric intestinal inflammation. Pediatr Res 75:127-32
Lu, Ning; Wang, Lihong; Cao, Hailong et al. (2014) Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol 192:1013-23
Wang, Lihong; Cao, Hailong; Lu, Ning et al. (2013) Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One 8:e56666
Weitkamp, Jorn-Hendrik; Koyama, Tatsuki; Rock, Michael T et al. (2013) Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 62:73-82
Yan, Fang; Liu, Liping; Dempsey, Peter J et al. (2013) A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 288:30742-51
Sierra, Johanna C; Hobbs, Stuart; Chaturvedi, Rupesh et al. (2013) Induction of COX-2 expression by Helicobacter pylori is mediated by activation of epidermal growth factor receptor in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 305:G196-203
Yan, Fang; Wang, Lihong; Shi, Yan et al. (2012) Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am J Physiol Gastrointest Liver Physiol 302:G504-14
Zhang, Yongqin; Dube, Philip E; Washington, M Kay et al. (2012) ErbB2 and ErbB3 regulate recovery from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival. Lab Invest 92:437-50
McElroy, Steven J; Prince, Lawrence S; Weitkamp, Jorn-Hendrik et al. (2011) Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 301:G656-66
Rosen, Michael J; Frey, Mark R; Washington, M Kay et al. (2011) STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 17:2224-34

Showing the most recent 10 out of 34 publications