Inflammatory bowel disease (IBD) is a complex multifactorial disorder in which epithelial defects and inappropriate immune responses to commensal microbiota lead to chronic mucosal damage of the gastrointestinal (GI) tract. IBD is associated with high morbidity and substantial financial burden, yet current therapies produce significant side effects with limited therapeutic options for non-responsive patients. Although many cytokines are linked to IBD pathogenesis, tumor necrosis factor (TNF) has received much attention as a therapeutic target. TNF is also a protective factor in intestinal homeostasis and IBD, as evident from published findings and preliminary data included in this application. While TNF signals through receptors (TNFR1 and TNFR2), their individual and tissue-specific roles in intestinal health and disease are unclear. Our group, which has been at the forefront of defining the protective roles of TNF in the GI tract, reported that TNFR1 and TNFR2 promote GI epithelial cell survival, restitution, and regeneration. Furthermore, recent studies and preliminar data included in this application show that TNFR1 and TNFR2 promote epithelial integrity in mice and protect against the development of colitis, microbial dysbiosis and sequelae, such as colitis-associated cancer. This suggests that that TNF signaling provides a critical reparative cue for the GI tract following injury. We will test the novel hypothesis that receptor-specific (TNFR1 vs. TNFR2) and cell type-specific (epithelial vs. immune cell) mechanisms determine protective effects of TNF in the colon and define potentially novel therapeutic targets. The following Aims are designed to address this overall hypothesis: 1. By using novel mouse and human reagents targeting receptor expression in injury and inflammation models, we will determine the role of intestinal epithelial TNFR1 and TNFR2 in epithelial regeneration and colitis, 2. Determine how TNFR1 and TNFR2 in specific immune cell subtypes regulate colonic inflammation and dysbiosis through epithelial and immune cell compartment disruption of respective receptor signaling and microbiome and metabolome profiling, and 3. Determine how TNFR transcriptional targets regulate intestinal epithelial regeneration, and how these targets can be applied to identify novel IBD therapies through computational modeling, high throughput screening, mouse models and human cell and enteroid culture. Thus, these studies will provide a significant advance in the field, by defining the cellular and tissue compartments of TNFR1- and TNFR2-based anti-inflammatory and homeostatic mechanisms and create a roadmap for developing potential new therapeutic targets and repositioning existing compounds to bring to bear on colitis and colonic homeostasis.

Public Health Relevance

Inflammatory bowel disease (IBD) is a complex disorder and a major illness of the gastrointestinal tract with chronic intestinal and other organ damage leading to high morbidity and substantial financial burden, with current therapies producing significant side effects and limited therapeutic options for non-responsive patients. While tumor necrosis factor (TNF) appears to have dual roles in IBD as both a protective and pathogenic factor, there is currently no clear approach for translating these observations into new predictors of disease or therapeutics. Findings from the studies in this application are designed to define novel specific therapeutic targets and to create a roadmap for developing additional new therapeutic targets while also repositioning existing compounds to bring to bear on colitis and gastrointestinal health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK056008-16
Application #
8786856
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Carrington, Jill L
Project Start
1999-08-15
Project End
2017-07-31
Budget Start
2014-09-19
Budget End
2015-07-31
Support Year
16
Fiscal Year
2014
Total Cost
$358,875
Indirect Cost
$141,375
Name
Children's Hospital of Los Angeles
Department
Type
DUNS #
052277936
City
Los Angeles
State
CA
Country
United States
Zip Code
90027
Frey, Mark R; Brent Polk, D (2014) ErbB receptors and their growth factor ligands in pediatric intestinal inflammation. Pediatr Res 75:127-32
Lu, Ning; Wang, Lihong; Cao, Hailong et al. (2014) Activation of the epidermal growth factor receptor in macrophages regulates cytokine production and experimental colitis. J Immunol 192:1013-23
Wang, Lihong; Cao, Hailong; Lu, Ning et al. (2013) Berberine inhibits proliferation and down-regulates epidermal growth factor receptor through activation of Cbl in colon tumor cells. PLoS One 8:e56666
Weitkamp, Jorn-Hendrik; Koyama, Tatsuki; Rock, Michael T et al. (2013) Necrotising enterocolitis is characterised by disrupted immune regulation and diminished mucosal regulatory (FOXP3)/effector (CD4, CD8) T cell ratios. Gut 62:73-82
Yan, Fang; Liu, Liping; Dempsey, Peter J et al. (2013) A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 288:30742-51
Sierra, Johanna C; Hobbs, Stuart; Chaturvedi, Rupesh et al. (2013) Induction of COX-2 expression by Helicobacter pylori is mediated by activation of epidermal growth factor receptor in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 305:G196-203
Yan, Fang; Wang, Lihong; Shi, Yan et al. (2012) Berberine promotes recovery of colitis and inhibits inflammatory responses in colonic macrophages and epithelial cells in DSS-treated mice. Am J Physiol Gastrointest Liver Physiol 302:G504-14
Zhang, Yongqin; Dube, Philip E; Washington, M Kay et al. (2012) ErbB2 and ErbB3 regulate recovery from dextran sulfate sodium-induced colitis by promoting mouse colon epithelial cell survival. Lab Invest 92:437-50
McElroy, Steven J; Prince, Lawrence S; Weitkamp, Jorn-Hendrik et al. (2011) Tumor necrosis factor receptor 1-dependent depletion of mucus in immature small intestine: a potential role in neonatal necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol 301:G656-66
Rosen, Michael J; Frey, Mark R; Washington, M Kay et al. (2011) STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 17:2224-34

Showing the most recent 10 out of 34 publications