The incidence of severe obesity (BMI >40 kg/m2) is increasing disproportionately and associated with elevated health care costs. We have reported that fatty acid oxidation (FAO) is depressed in the skeletal muscle of severely obese patients, which may predispose these individuals to ectopic lipid accumulation. Our preliminary findings suggest that this decrement in FAO is due to a reduction in mitochondrial content which is linked with an inability to appropriately induce mitochondrial biosynthesis (metabolic inflexibility). Together, these data are indicative of a "metabolic program" with severe obesity which favors lipid deposition;in contrast exercise training increases FAO and rescues metabolic flexibility in severely obese patients. These findings have led to our central hypothesis that the depressed FAO and metabolic inflexibility evident in the skeletal muscle of severely obese individuals is due to a reduction in mitochondrial content which stems, at least in part, from an inability to respond appropriately to conditions that induce mitochondrial biosynthesis, with the notable exception of exercise training. Findings could aid in understanding the underlying biology of this condition and designing effective treatments as well as promoting physical activity as an intervention/prevention for severe obesity. Our hypothesis will be tested by the following aims.
Aim 1 : To determine if the regulation of mtDNA in skeletal muscle is altered with severe obesity in a manner that depresses FAO. a) Is occupancy of the NRF-1 (nuclear respiratory factor -1) binding site on the TFAM (mitochondrial transcription factor A) promoter reduced with severe obesity? b) Is the reduction in TFAM expression linked with methylation of the TFAM promoter region? c) Can TFAM overexpression ameliorate the metabolic phenotype evident with obesity? d) Is insulin-induced mitochondrial biosynthesis impaired in the muscle of severely obese individuals? e) Are the defects discerned in HSkMC evident in-vivo? Aim 2: To determine if there is a coordinated dysregulation of nuclear genes required for mitochondrial biosynthesis with severe obesity. a) Is there a coordinated reduction in the expression of NRF-1 target genes with severe obesity? b) Is NRF- 1 occupancy on genes linked with mitochondrial biosynthesis reduced with severe obesity? c) Can NRF-1 overexpression rescue the decrements in mitochondrial content, FAO, and metabolic inflexibility evident with severe obesity? Aim 3: To determine if components of exercise training can rescue skeletal muscle from the metabolic phenotype/program evident with severe obesity. a) Does contractile activity increase FAO and metabolic flexibility to a similar extent in HSkMC from lean and severely obese individuals? b) Does contractile activity restore obesity-related decrements in TFAM or NRF-1 target genes? c) Will an increase in energy demand reverse the severely obese phenotype? d) Does exercise training (in-vivo) rescue muscle from the metabolic program evident with severe obesity?

Public Health Relevance

We have previously reported that severely obese (BMI >40 kg/m2) individuals display a decrement in fatty acid oxidation in skeletal muscle which may lead to positive lipid balance and ectopic lipid accumulation. The broad, long-term objective of the current proposal is to discern the cellular mechanisms responsible for the reduction in fatty acid oxidation in the skeletal muscle of severely obese humans and if exercise training functions as an effective intervention. The relevance of this work is that the incidence of severe obesity is increasing disproportionately and associated with elevated health costs;findings obtained could aid in understanding the underlying biology of this condition and designing treatments as well as promoting physical activity as an effective intervention/prevention for severe obesity.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Laughlin, Maren R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
East Carolina University
Other Domestic Higher Education
United States
Zip Code
Bollinger, Lance M; Witczak, Carol A; Houmard, Joseph A et al. (2014) SMAD3 augments FoxO3-induced MuRF-1 promoter activity in a DNA-binding-dependent manner. Am J Physiol Cell Physiol 307:C278-87
Fisher-Wellman, Kelsey H; Weber, Todd M; Cathey, Brook L et al. (2014) Mitochondrial respiratory capacity and content are normal in young insulin-resistant obese humans. Diabetes 63:132-41
Consitt, Leslie A; Van Meter, Jessica; Newton, Christopher A et al. (2013) Impairments in site-specific AS160 phosphorylation and effects of exercise training. Diabetes 62:3437-47
Zhu, Jiang; Adli, Mazhar; Zou, James Y et al. (2013) Genome-wide chromatin state transitions associated with developmental and environmental cues. Cell 152:642-54
Boyle, K E; Canham, J P; Consitt, L A et al. (2011) A high-fat diet elicits differential responses in genes coordinating oxidative metabolism in skeletal muscle of lean and obese individuals. J Clin Endocrinol Metab 96:775-81
Kovalik, Jean-Paul; Slentz, Dorothy; Stevens, Robert D et al. (2011) Metabolic remodeling of human skeletal myocytes by cocultured adipocytes depends on the lipolytic state of the system. Diabetes 60:1882-93
Frisard, Madlyn I; McMillan, Ryan P; Marchand, Julie et al. (2010) Toll-like receptor 4 modulates skeletal muscle substrate metabolism. Am J Physiol Endocrinol Metab 298:E988-98
Consitt, Leslie A; Bell, Jill A; Koves, Timothy R et al. (2010) Peroxisome proliferator-activated receptor-gamma coactivator-1alpha overexpression increases lipid oxidation in myocytes from extremely obese individuals. Diabetes 59:1407-15
Bikman, Benjamin T; Zheng, Donghai; Reed, Melissa A et al. (2010) Lipid-induced insulin resistance is prevented in lean and obese myotubes by AICAR treatment. Am J Physiol Regul Integr Comp Physiol 298:R1692-9
Thyfault, John P; Cree, Melanie G; Tapscott, Edward B et al. (2010) Metabolic profiling of muscle contraction in lean compared with obese rodents. Am J Physiol Regul Integr Comp Physiol 299:R926-34

Showing the most recent 10 out of 31 publications