This grant has been continuously funded since 1996, the most recent cycle started in 09/2007. The focus will remain on how specific cell cycle proteins regulate glomerular cells in health, and in disease. Glomerular diseases are an important field of study as they are the commonest causes of chronic and end stage kidney disease. In this competitive renewal, we will continue to study the glomerular podocytes (podo), because of their critical biological role in the prevention of proteinuria and sclerosis. Major progress made during the current funding cycle was our discovery of a new paradigm relating to cell cycle control, where the constitutively expressed cyclin dependent kinase (cdk) 5 is dually activated by the relatively unknown cyclin I, as well as the non-cyclin p35. The second major discovery made was that activation of cdk5 by cyclin I and p35 safeguards terminally differentiated cells like podo and neurons from apoptosis. The clinical significance is podo loss is a major contributor to proteinuria and sclerosis. The impact and relevance of cdk5, cyclin I and p35 in the kidney was further supported by our preliminary data showing that mice deficient in cdk5, or lacking both cyclin I and p35, do not develop normal glomeruli. Although cell cycle proteins are traditionally viewed as regulating cell proliferation, and more recently apoptosis, the goal of the first aim of this competitive renewal is to show a new paradigm for cell cycle protein function, based on our preliminary data. The proposed studies will test the hypothesis that cdk5 and its activators cyclin I and p35 control proteinuria and podo shape by complexing with, phosphorylating and regulating levels of the slit diaphragm proteins podocin and nephrin, and the actin-binding proteins podocalyxin and ezrin. These studies will change our current thinking by closing the gap on our current knowledge of how key podo proteins are governed, and what happens in glomerular diseases. The overall goal of the second aim is to show new regulatory paradigms for cyclin I-p35-cdk5, which play a fundamental role in glomerular and brain development. Following up on our preliminary data, this aim will test two hypotheses: first, that cyclin I anchors cdk5 to the nucleus, whereas p35 insures a cytoplasmic localization;second, that the dual activation by cyclin I and p35 insures constant cdk5 activity, and both cooperate to set the threshold for cdk5 functions under normal and disease states. We have developed innovative tools to test these hypotheses by generating transgenic mice lacking cdk5 specifically in podo (Nephrin-cre-EGFP-cdk5 flox), lacking cdk5 specifically in podo in an inducible manner (NPHS2rtTA/TetO-cre mice), and lacking both activators (cyclin I-/-p35-/- mice). Cultured podo from these mice will complement the approach. In summary, the studies proposed will advance scientific knowledge in glomerular diseases, and in cell cycle protein research. Our published work shows that studying podo has the added advantage that discoveries in cell cycle can be broadly applied to other terminally differentiated cells, which helps drive discovery in the field.

Public Health Relevance

The studies proposed in this competitive renewal will show novel roles in podo for cdk5 and its partners cyclin I and p35, in the regulation of the slit diaphragm proteins podocin and nephrin, and the actin-regulating proteins podocalyxin and ezrin, and how these are affected in disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK056799-11
Application #
8467705
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Mullins, Christopher V
Project Start
2000-05-01
Project End
2015-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
11
Fiscal Year
2013
Total Cost
$324,277
Indirect Cost
$114,389
Name
University of Washington
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Gharib, Sina A; Pippin, Jeffrey W; Ohse, Takamoto et al. (2014) Transcriptional landscape of glomerular parietal epithelial cells. PLoS One 9:e105289
Burford, James L; Villanueva, Karie; Lam, Lisa et al. (2014) Intravital imaging of podocyte calcium in glomerular injury and disease. J Clin Invest 124:2050-8
Jefferson, J Ashley; Shankland, Stuart J (2014) The pathogenesis of focal segmental glomerulosclerosis. Adv Chronic Kidney Dis 21:408-16
Naito, Shokichi; Pippin, Jeffrey W; Shankland, Stuart J (2014) The glomerular parietal epithelial cell's responses are influenced by SM22 alpha levels. BMC Nephrol 15:174
Pippin, Jeffrey W; Glenn, Sean T; Krofft, Ronald D et al. (2014) Cells of renin lineage take on a podocyte phenotype in aging nephropathy. Am J Physiol Renal Physiol 306:F1198-209
Shankland, Stuart J; Pippin, Jeffrey W; Duffield, Jeremy S (2014) Progenitor cells and podocyte regeneration. Semin Nephrol 34:418-28
Pippin, Jeffrey W; Sparks, Matthew A; Glenn, Sean T et al. (2013) Cells of renin lineage are progenitors of podocytes and parietal epithelial cells in experimental glomerular disease. Am J Pathol 183:542-57
Zhang, Jiong; Pippin, Jeffrey W; Krofft, Ronald D et al. (2013) Podocyte repopulation by renal progenitor cells following glucocorticoids treatment in experimental FSGS. Am J Physiol Renal Physiol 304:F1375-89
Burnworth, Bettina; Pippin, Jeff; Karna, Prasanthi et al. (2012) SSeCKS sequesters cyclin D1 in glomerular parietal epithelial cells and influences proliferative injury in the glomerulus. Lab Invest 92:499-510
Taniguchi, Yoshinori; Pippin, Jeffrey W; Hagmann, Henning et al. (2012) Both cyclin I and p35 are required for maximal survival benefit of cyclin-dependent kinase 5 in kidney podocytes. Am J Physiol Renal Physiol 302:F1161-71

Showing the most recent 10 out of 62 publications