The overall goal of this study is to validate our hypothesis that lentivirus vectors can serve as an efficient and safe platform for therapeutic gene delivery to the liver tissue. The ability of HIV-1 and other lentiviruses to transduce non-dividing cells prompt the development of an HIV-l based gene delivery system. The novel lentivirus vectors proved efficient at transducing various tissues in vivo (brain, liver, muscle, retina, and hematopoietic stem cells) without any detectable pathology. Recently, we showed that a single intraperitoneal injection of hemophilic mice with lentivirus vectors resulted in long term expression of therapeutic levels of canine factor IX. The treated mice demonstrated aPTT values equivalent to those obtained from heterozygous littermates. In addition our preliminary results indicated that cis-regulatory sequences in the lentivirus down-regulate transgene expression. These studies are most encouraging, however we believe that further improvements in: vector production, trsansgene expression, and regulation, and better characterization of the mechanism responsible for the development of inhibitory antibodies are required before we can consider the use of the lentiviral system as a safe and efficient viral vector for liver gene therapy. To facilitate safe vector production we propose to generate a novel third generation packaging cell line, which will be devoid of the Tat and all HIV-l accessory proteins. As an additional measurement of safety, we will separate the new packaging system into four stably integrated plasmids (vector, envelope, packaging, and rev). To improve transgene expression from the lentivirus vector cassette we will attempt to identify and delete inhibitory sequences from the lentivirus vector genome. To improve regulation of transgene expression we will generate an improved new inducible lentivirus vector which will exhibit minimal basal inducible promoter activity. Testing the proposed improvements in hemophilic mouse and canine animal models will allow us to characterize potential immune response against the newly synthesized factor IX. We believe that the ability to maintain therapeutic levels of factor IX in these animal models will determine the feasibility of using lentivirus vector based gene therapy to cure hemophilia B and other hepatic metabolic diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK058702-04
Application #
6725326
Study Section
Medical Biochemistry Study Section (MEDB)
Program Officer
Mckeon, Catherine T
Project Start
2001-04-01
Project End
2006-01-31
Budget Start
2004-02-01
Budget End
2005-01-31
Support Year
4
Fiscal Year
2004
Total Cost
$218,250
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Simmons, Aaron B; Bretz, Colin A; Wang, Haibo et al. (2018) Gene therapy knockdown of VEGFR2 in retinal endothelial cells to treat retinopathy. Angiogenesis 21:751-764
Becker, Silke; Wang, Haibo; Simmons, Aaron B et al. (2018) Targeted Knockdown of Overexpressed VEGFA or VEGF164 in Müller cells maintains retinal function by triggering different signaling mechanisms. Sci Rep 8:2003
Suwanmanee, Thipparat; Ferris, Martin T; Hu, Peirong et al. (2017) Toward Personalized Gene Therapy: Characterizing the Host Genetic Control of Lentiviral-Vector-Mediated Hepatic Gene Delivery. Mol Ther Methods Clin Dev 5:83-92
Hu, Peirong; Li, Yedda; Nikolaishvili-Feinberg, Nana et al. (2016) Hematopoietic Stem cell transplantation and lentiviral vector-based gene therapy for Krabbe's disease: Present convictions and future prospects. J Neurosci Res 94:1152-68
Hu, Peirong; Li, Yedda; Sands, Mark S et al. (2015) Generation of a stable packaging cell line producing high-titer PPT-deleted integration-deficient lentiviral vectors. Mol Ther Methods Clin Dev 2:15025
Monahan, Paul E; Sun, Junjiang; Gui, Tong et al. (2015) Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther 26:69-81
Shen, Shen; Berry, Garrett E; Castellanos Rivera, Ruth M et al. (2015) Functional analysis of the putative integrin recognition motif on adeno-associated virus 9. J Biol Chem 290:1496-504
Wang, Haibo; Yang, Zhihong; Jiang, Yanchao et al. (2014) Quantitative analyses of retinal vascular area and density after different methods to reduce VEGF in a rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 55:737-44
Jiang, Yanchao; Wang, Haibo; Culp, David et al. (2014) Targeting Müller cell-derived VEGF164 to reduce intravitreal neovascularization in the rat model of retinopathy of prematurity. Invest Ophthalmol Vis Sci 55:824-31
Suwanmanee, Thipparat; Hu, Genlin; Gui, Tong et al. (2014) Integration-deficient lentiviral vectors expressing codon-optimized R338L human FIX restore normal hemostasis in Hemophilia B mice. Mol Ther 22:567-574

Showing the most recent 10 out of 23 publications