Medium chain fatty acid ingestion (MCFA) results in diminished fat storage in animals and humans, while similar intake of long chain fatty acids (LCFA) results in weight-gain. The goal of our project is to examine the cellular mechanisms underlying this phenomenon. Our hypothesis is that substitution of MCFA for LCFA will down-regulate the expression of adipogenic proteins, lower the lipid storage capacity of adipose cells, facilitate fatty acid release from stored fat, and probably also reduce the capacity for differentiation of adipose cell precursors.
The specific aims of this study focus on: 1) the metabolic fate of MCFA and how this is influenced by LCFA, glucose and insulin, 2) the effects of MCFA on fat storage and lipolysis, and on membrane lipid composition of sub-cellular components (plasma membrane, mitochondria, and endoplasmic reticulum); 3) the effects of MCFA on the expression of adipogenic proteins during the differentiation process; and 4) changes in fat cell function as a result of long-term MCFA dietary adaptation. An integrated approach will be used to characterize the metabolic end products of MCFA, to search for unidentified end products, and to explain the excess energy expenditure that results from MCFA treatment. We will identify and quantify, the major metabolic end products of fatty acids (lipids and CO2) by NMR. 13C isotope labeled substrates will be used in appropriate experiments. This greatly enhances the selectivity and sensitivity of NMR analysis. We will compare heat generation by cells adapted to MCFA or LCFA by measuring oxygen consumption and redox state; quantify the important metabolites (acetylCoA and acetylcarnitine) by HPLC, and analyze the fatty acid compositions by GLC. If significant changes in sub-cellular membrane composition are found as a result of MCFA treatment, subsequent effects on membrane structure and fluidity will be analyzed by solid state NMR. Other standard biochemical assays will be used for the measurement of ketone bodies, total triglycerides, cholesterol, DNA, protein, etc. The mRNA products of differentiation- dependent adipogenic genes will be determined by Northern analysis. Fat cell morphology will be characterized by phase- contrast microscopy. Using this integrated approach, we anticipate developing important new information to help shed light on the molecular mechanisms of the control of obesity and obesity-related health disorders afforded through MCFA administration.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK059261-02
Application #
6381999
Study Section
Metabolism Study Section (MET)
Program Officer
Laughlin, Maren R
Project Start
2000-06-01
Project End
2004-05-31
Budget Start
2001-06-01
Budget End
2002-05-31
Support Year
2
Fiscal Year
2001
Total Cost
$196,875
Indirect Cost
Name
Boston Medical Center
Department
Type
DUNS #
005492160
City
Boston
State
MA
Country
United States
Zip Code
02118
Guo, Wen; Wong, Siu; Bhasin, Shalender (2013) AAV-mediated administration of myostatin pro-peptide mutant in adult Ldlr null mice reduces diet-induced hepatosteatosis and arteriosclerosis. PLoS One 8:e71017
Trudeau, Kyle; Molina, Anthony J A; Roy, Sayon (2011) High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes. Invest Ophthalmol Vis Sci 52:8657-64
Wang, Tong; Si, Yaguang; Shirihai, Orian S et al. (2010) Respiration in adipocytes is inhibited by reactive oxygen species. Obesity (Silver Spring) 18:1493-502
Trudeau, Kyle; Molina, Anthony J A; Guo, Wen et al. (2010) High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am J Pathol 177:447-55
Tu, Powen; Bhasin, Shalender; Hruz, Paul W et al. (2009) Genetic disruption of myostatin reduces the development of proatherogenic dyslipidemia and atherogenic lesions in Ldlr null mice. Diabetes 58:1739-48
Guo, Wen; Wong, Siu; Pudney, Jeffrey et al. (2009) Acipimox, an inhibitor of lipolysis, attenuates atherogenesis in LDLR-null mice treated with HIV protease inhibitor ritonavir. Arterioscler Thromb Vasc Biol 29:2028-32
Guo, Wen; Jiang, Lan; Bhasin, Shalender et al. (2009) DNA extraction procedures meaningfully influence qPCR-based mtDNA copy number determination. Mitochondrion 9:261-5
Gupta, Vandana; Bhasin, Shalender; Guo, Wen et al. (2008) Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes. Mol Cell Endocrinol 296:32-40
Guo, Wen; Flanagan, John; Jasuja, Ravi et al. (2008) The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways. J Biol Chem 283:9136-45
Guo, Wen; Huang, Nasi; Cai, Jun et al. (2006) Fatty acid transport and metabolism in HepG2 cells. Am J Physiol Gastrointest Liver Physiol 290:G528-34

Showing the most recent 10 out of 12 publications