PROPOSAL ABSTRACT The long range objective of our laboratory is to understand the cellular and molecular mechanisms by which signaling pathways and downstream transcription factors coordinate the specification of adrenocortical cells within the adrenal gland. Our strategy for this proposal is to focus on the role of SF1 and the SF1 target gene Dax1 in the regulation of adrenocortical growth maintenance. Based on our preliminary data, we hypothesize that unique transcriptional programs in subcapsular undifferentiated progenitor cells serve to maintain the functional capacity of the adrenal cortex.
Our specific aims are directed towards a systematic characterization of novel functions of SF1 critical to this process. We propose to determine the origin of the SF1 positive subcapsular cells (specific aim 1), define the role of Dax1 in the self-renewal and multipotent properties of these adrenocortical cells in vivo (specific aim 2) and determine the mechanisms by which SF1 is activated to initiate a unique proliferation-associated transcriptional profile in this subcapsular population (specific aim 3). The studies proposed here will provide the critical framework for understanding the role of SF1 in adrenocortical stem/progenitor cells in adrenal growth maintenance and lay the groundwork for future therapeutic efforts in diseases of adrenal growth including both hypoplasias and cancer.

Public Health Relevance

Most hormone disorders of the adrenal cortical occur in the context of organ failure or overgrowth. Increasing evidence indicates that the cortex constantly renews its cell population through the constant proliferation of uncommitted cells lying in and/or underneath the outer capsule. Using cellular systems, mouse models together with genomic approaches, we aim to characterize the stem/progenitor cells of the adrenal cortex and uncover the mechanisms by which these cells are regulated by SF1 in normal adrenal growth maintenance. Future efforts are predicted to focus on therapies that target this pathway and downstream genes that are found in the course of these studies to participate in adrenocortical stem/progenitor cell biology.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Margolis, Ronald N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Internal Medicine/Medicine
Schools of Medicine
Ann Arbor
United States
Zip Code
Walczak, Elisabeth M; Kuick, Rork; Finco, Isabella et al. (2014) Wnt signaling inhibits adrenal steroidogenesis by cell-autonomous and non-cell-autonomous mechanisms. Mol Endocrinol 28:1471-86
Lerario, Antonio M; Moraitis, Andreas; Hammer, Gary D (2014) Genetics and epigenetics of adrenocortical tumors. Mol Cell Endocrinol 386:67-84
Krill, Kenneth T; Gurdziel, Katherine; Heaton, Joanne H et al. (2013) Dicer deficiency reveals microRNAs predicted to control gene expression in the developing adrenal cortex. Mol Endocrinol 27:754-68
Wood, Michelle A; Acharya, Asha; Finco, Isabella et al. (2013) Fetal adrenal capsular cells serve as progenitor cells for steroidogenic and stromal adrenocortical cell lineages in M. musculus. Development 140:4522-32
Kelly, Victoria R; Hammer, Gary D (2011) LRH-1 and Nanog regulate Dax1 transcription in mouse embryonic stem cells. Mol Cell Endocrinol 332:116-24
Scheys, Joshua O; Heaton, Joanne H; Hammer, Gary D (2011) Evidence of adrenal failure in aging Dax1-deficient mice. Endocrinology 152:3430-9
Schimmer, Bernard P; Tsao, Jennivine; Cordova, Martha et al. (2011) Contributions of steroidogenic factor 1 to the transcription landscape of Y1 mouse adrenocortical tumor cells. Mol Cell Endocrinol 336:85-91
Wood, Michelle A; Hammer, Gary D (2011) Adrenocortical stem and progenitor cells: unifying model of two proposed origins. Mol Cell Endocrinol 336:206-12
Garcia-Perez, Jose L; Morell, Maria; Scheys, Joshua O et al. (2010) Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769-73
Looyenga, Brendan D; Wiater, Ezra; Vale, Wylie et al. (2010) Inhibin-A antagonizes TGFbeta2 signaling by down-regulating cell surface expression of the TGFbeta coreceptor betaglycan. Mol Endocrinol 24:608-20

Showing the most recent 10 out of 29 publications