Stress urinary incontinence (SUI) is defined as involuntary loss of urine secondary to an increase in abdominal pressure during events such as sneezing, coughing or laughing in the absence of bladder contractions. This disorder is a significant gynecological/urological problem currently affecting approximately 25 million American women. These SUI patients exhibit the high incidence of intrinsic sphincter deficiency, characterized by a malfunction of the urethral sphincter mechanism resulting in the low-pressure urethra. However, normal physiology and pathophysiology of the urethral continence mechanism in relation to SUI are not well elucidated. Thus, utilizing both in-vivo and ex-vivo techniques developed in our laboratory, we propose to perform systematic analyses of urethral continence mechanisms under stress conditions. First, in-vivo neurophysiological analyses will be performed in normal animals and animal models of SUI. Next, ex-vivo biomechanical analyses will be performed of the normal and SUI urethra. Finally, based on these results, we will also seek to explore potential pharmacotherapies of SUI. In this proposal, we hypothesize: 1) the detailed neurophysiological and biomechanical properties contributing to normal urethral continence mechanisms at different positions along the urethra can be identified in normal rats, 2) pathological changes in neurophysiological and biomechanical properties of urethral continence mechanisms can be identified in two different animals models of SUI, and 3) pharmacological treatments using serotonine/norepinephrine reuptake inhibitors and/or adrenoceptor agonists can improve urethral continence mechanisms in two animal models of SUL The Specific Aims of this grant are: I) to characterize the normal physiological and biomechanical properties of the urethral closure mechanisms in normal animals using: a) microtip transducer catheters to measure bladder and urethral responses in-vivo during sneezing or passive increases in intravesical pressure, b) in-vivo leak point pressure measurements during sneezing or passive increases in intravesical pressure, and c) ex-vivo whole urethra biomechanical studies; II) to investigate the pathological changes in the above measurements in two rat models of SUI (vaginal over distension or transection of the nerves to external urethral sphincter and pelvic floor muscles); and III) to investigate possible pharmacotherapies for improving the urethral closure mechanism in the two rat models of SUI. By defining the detailed urethral pathology of SUI, we can offer the hope of prevention and reversal of this potentially devastating condition. This is recognized as a high priority in the urologic/gynecologic care of SUI patients. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK067226-01
Application #
6761522
Study Section
Special Emphasis Panel (ZRG1-UROL (01))
Program Officer
Mullins, Christopher V
Project Start
2004-04-01
Project End
2009-03-31
Budget Start
2004-04-01
Budget End
2005-03-31
Support Year
1
Fiscal Year
2004
Total Cost
$341,355
Indirect Cost
Name
University of Pittsburgh
Department
Urology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Kitta, Takeya; Yoshikawa, Satoru; Kawamorita, Naoki et al. (2016) The effect of ovariectomy on urethral continence mechanisms during sneeze reflex in middle-aged versus young adult rats. Neurourol Urodyn 35:122-7
Kawamorita, Naoki; Yoshikawa, Satoru; Kashyap, Mahendra et al. (2016) Liposome Based Intravesical Therapy Targeting Nerve Growth Factor Ameliorates Bladder Hypersensitivity in Rats with Experimental Colitis. J Urol 195:1920-6
Miyazato, Minoru; Kitta, Takeya; Kaiho, Yasuhiro et al. (2015) Effects of Duloxetine on Urethral Continence Reflex and Bladder Activity in Rats with Cerebral Infarction. J Urol 194:842-7
Kawamorita, Naoki; Kaiho, Yasuhiro; Miyazato, Minoru et al. (2015) Roles of the spinal glutamatergic pathway activated through ?-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors and its interactions with spinal noradrenergic and serotonergic pathways in the rat urethral continence mechanisms. Neurourol Urodyn 34:475-81
Sumino, Yasuhiro; Yoshikawa, Satoru; Mimata, Hiromitsu et al. (2014) Therapeutic effects of IGF-1 on stress urinary incontinence in rats with simulated childbirth trauma. J Urol 191:529-38
Yoshikawa, Satoru; Kitta, Takeya; Miyazato, Minoru et al. (2014) Inhibitory role of the spinal cholinergic system in the control of urethral continence reflex during sneezing in rats. Neurourol Urodyn 33:443-8
Koike, Yusuke; Furuta, Akira; Suzuki, Yasuyuki et al. (2013) Pathophysiology of urinary incontinence in murine models. Int J Urol 20:64-71
Yoshimura, Naoki; Miyazato, Minoru (2012) Neurophysiology and therapeutic receptor targets for stress urinary incontinence. Int J Urol 19:524-37
Haworth, Donna J; Kitta, Takeya; Morelli, Brian et al. (2011) Strain-dependent urethral response. Neurourol Urodyn 30:1652-8
Kitta, Takeya; Haworth-Ward, Donna J; Miyazato, Minoru et al. (2011) Effects of ovariectomy and estrogen replacement on the urethral continence reflex during sneezing in rats. J Urol 186:1517-23

Showing the most recent 10 out of 34 publications