Maintenance of glucose homeostasis is central to our health and its failure results in diabetes mellitus. Despite current treatment regimens of several insulin injections per day, blood glucose levels still fluctuate significantly in diabetic patients, making diabetes the sixth leading cause of death in the United States. Alternative approaches to insulin injections include attempts to develop a cell therapy for diabetes by producing insulin- secreting ?-cells from human embryonic stem cells (hESCs) cells or by reprogramming other cell types into ?- cells. However, despite some success to differentiate hESCs into insulin-expressing cells, these cells express multiple hormones and are not capable of reversing diabetes. The main bottleneck for generating true functional ?-cells from other cell sources is the paucity of knowledge of how ?-cells are specified. We observed that conditional, stable activation of the transcription factor Nkx6.1 in endocrine progenitors introduces a ?-cell fate bias and disfavors differentiation into non-?-cell islet cell types. Moreover, we found that Nkx6.1 is required to maintain expression of ?-cell-specific programs of gene expression in adult mice. Research under this proposal will (a) define the molecular cues that specify ?-cells and repress alternative endocrine cell fates, (b) directly test whether the Nkx6.1 can reprogram non-?-cell islet cells into ?-cells in vivo and (c) genetically dissect the gene regulatory network controlled by Nkx6.1 in the regulation of adult ?-cell fate maintenance, proliferation and function. Knowledge gained from these studies will help devise strategies to resolve mixed endocrine lineage patterns in hESC-derived endocrine cells and to reprogram other cell types into fully functional ?-cells.

Public Health Relevance

The initial success of isolated islet transplants in diabetic patients has been dampened by the realization that the low number of human donor pancreases will preclude a wide clinical application. Human embryonic stem cells (hESCs) could offer an unlimited cell supply, but it is currently unknown how to instruct hESC-derived pancreatic precursors to generate insulin-producing beta-cells. This proposal will define the mechanisms whereby beta-cells are generated from their precursors in mice and will define pathways that are important for generating new beta-cells during adulthood.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK068471-09
Application #
8510628
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
2004-06-01
Project End
2015-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
9
Fiscal Year
2013
Total Cost
$316,495
Indirect Cost
$106,607
Name
University of California San Diego
Department
Pediatrics
Type
Schools of Medicine
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Barrionuevo, Francisco J; Hurtado, Alicia; Kim, Gwang-Jin et al. (2016) Sox9 and Sox8 protect the adult testis from male-to-female genetic reprogramming and complete degeneration. Elife 5:
Shih, Hung Ping; Panlasigui, Devin; Cirulli, Vincenzo et al. (2016) ECM Signaling Regulates Collective Cellular Dynamics to Control Pancreas Branching Morphogenesis. Cell Rep 14:169-79
Kopp, Janel L; Grompe, Markus; Sander, Maike (2016) Stem cells versus plasticity in liver and pancreas regeneration. Nat Cell Biol 18:238-45
Wortham, M; Sander, M (2016) Mechanisms of β-cell functional adaptation to changes in workload. Diabetes Obes Metab 18 Suppl 1:78-86
Gholkar, Ankur A; Senese, Silvia; Lo, Yu-Chen et al. (2016) The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. Cell Rep 14:180-8
Font-Burgada, Joan; Shalapour, Shabnam; Ramaswamy, Suvasini et al. (2015) Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. Cell 162:766-79
Taylor, Brandon L; Benthuysen, Jacqueline; Sander, Maike (2015) Postnatal β-cell proliferation and mass expansion is dependent on the transcription factor Nkx6.1. Diabetes 64:897-903
Xie, Ruiyu; Carrano, Andrea C; Sander, Maike (2015) A systems view of epigenetic networks regulating pancreas development and β-cell function. Wiley Interdiscip Rev Syst Biol Med 7:1-11
Shih, Hung Ping; Seymour, Philip A; Patel, Nisha A et al. (2015) A Gene Regulatory Network Cooperatively Controlled by Pdx1 and Sox9 Governs Lineage Allocation of Foregut Progenitor Cells. Cell Rep 13:326-36
Shih, Hung Ping; Sander, Maike (2014) Pancreas development ex vivo: culturing embryonic pancreas explants on permeable culture inserts, with fibronectin-coated glass microwells, or embedded in three-dimensional Matrigelâ„¢. Methods Mol Biol 1210:229-37

Showing the most recent 10 out of 26 publications