Transcriptional control of gene expression requires a carefully orchestrated set of physical and functional interactions among DNA-binding activators, transcriptional coregulators, the RNA polymerase II transcriptional machinery, and the chromatin template. In this proposal, we explore the role of poly(ADP- ribose) polymerase-1 (PARP-1), a nucleosome-binding protein, in the chromatin-dependent control of both basal and estrogen-regulated transcription. PARP-1 has an intrinsic enzymatic activity that catalyzes the polymerization of ADP-ribose chains on target proteins from donor nicotinamide adenine dinucleotide (NAD+) molecules. Recent studies have revealed an important role for PARP-1 as a modulator of estrogen receptor-dependent transcription. Yet, among the many gene regulatory factors with enzymatic activities, PARP-1 is one of the least well characterized. In particular, the mechanisms directing PARP-1 to specific target promoters in the genome, the effects of PARP-1 on the composition and structure of promoter chromatin, and the role of nuclear NAD+ metabolism in regulating PARP-1 activity are not well understood. The long-term objective of these studies is to achieve a better understanding of the chromatin- dependent molecular mechanisms underlying the control of basal and signal-regulated transcription by PARP-1 and its associated factors. Our broad hypothesis is that the gene regulatory activity of PARP-1 is determined by (1) the local chromatin environment (e.g., chromatin composition, histone modifications), (2) physical and functional interactions among PARP-1, signal-regulated DNA-binding activators (e.g., estrogen receptor 1; ER1), and other coregulators, and (3) the availability of NAD+ in the nucleus. In this proposal, we outline a series of experiments using an integrated approach with a complementary set of biochemical, biophysical, and cell-based assays that will test the broad hypothesis noted above and address three specific aims which will determine: (1) the molecular mechanisms underlying the modulation of basal gene expression by PARP-1 and its associated factors in cells, (2) the molecular mechanisms underlying the regulation of estrogen-dependent gene expression by PARP-1 and its associated factors in cells, and (3) the biochemical mechanisms underlying the chromatin- dependent regulation of gene expression by PARP-1 and its associated factors in vitro. Collectively, the studies outlined in these aims will provide new insights into the molecular mechanisms of PARP-1's gene regulatory activity in the context of chromatin, including those relevant to ER1-dependent transcription. In addition, these studies will provide new insights into the role of nuclear NAD+ signaling in hormone-regulated transcription, an exciting new area that is only now beginning to be understood. Given the roles of PARP-1 and ER1 in human disease, our studies could also lead to new ways to exploit these factors as therapeutic targets.

Public Health Relevance

Statement Poly(ADP-ribose) polymerase-1 (PARP-1) and estrogen receptor alpha (ER1) are two nuclear factors that play key roles in human diseases, such as breast cancers. Understanding the molecular actions of PARP- 1 and ER1, as well as the functional interplay between these two proteins, may suggest new ways to target these factors for the treatment of breast cancers and other hormone-regulated diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-EMNR-G (05))
Program Officer
Margolis, Ronald N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Liu, Ziying; Kraus, W Lee (2017) Catalytic-Independent Functions of PARP-1 Determine Sox2 Pioneer Activity at Intractable Genomic Loci. Mol Cell 65:589-603.e9
Lin, Ken Y; Kraus, W Lee (2017) PARP Inhibitors for Cancer Therapy. Cell 169:183
Gupte, Rebecca; Liu, Ziying; Kraus, W Lee (2017) PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev 31:101-126
Luo, Xin; Ryu, Keun Woo; Kim, Dae-Seok et al. (2017) PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBP? and Modulating Its Transcriptional Activity. Mol Cell 65:260-271
Gibson, Bryan A; Zhang, Yajie; Jiang, Hong et al. (2016) Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 353:45-50
Ryu, Keun Woo; Kim, Dae-Seok; Kraus, W Lee (2015) New facets in the regulation of gene expression by ADP-ribosylation and poly(ADP-ribose) polymerases. Chem Rev 115:2453-81
Chae, Minho; Danko, Charles G; Kraus, W Lee (2015) groHMM: a computational tool for identifying unannotated and cell type-specific transcription units from global run-on sequencing data. BMC Bioinformatics 16:222
Winans, Bethany; Nagari, Anusha; Chae, Minho et al. (2015) Linking the aryl hydrocarbon receptor with altered DNA methylation patterns and developmentally induced aberrant antiviral CD8+ T cell responses. J Immunol 194:4446-57
Kraus, W Lee (2015) PARPs and ADP-Ribosylation: 50 Years … and Counting. Mol Cell 58:902-10
Liu, Xiuli; Kraus, W Lee; Bai, Xiaoying (2015) Ready, pause, go: regulation of RNA polymerase II pausing and release by cellular signaling pathways. Trends Biochem Sci 40:516-25

Showing the most recent 10 out of 30 publications