Autosomal dominant polycystic kidney disease (ADPKD) is characterized by kidney cyst formation that progresses to end-stage renal failure at a high frequency. The disease also encompasses systemic vascular complications such as hypertension and vascular aneurysms that increase the overall mortality of the disease. Mutations in two genes Pkd1 and Pkd2 account for most cases of ADPKD. Recent studies show that PKD2 functions as a calcium-activated, calcium-permeable cation channel; and PKD1 plays a role in regulating the PKD2 channel activity. A high concentration of PKD1 and PKD2 co-localizes on primary cilia of renal epithelia. The current working model is that cilium-associated PKD1/PKD2 protein complex mediates Ca2+ influx through cilia bending in response to fluid flow in the renal tubules. Loss of either PKD1 or PK02 leads to a common defect in ciliary Ca2+ influx and this is one of the contributing factors of cyst formation in the kidney. This proposal utilizes a novel ciliary model of PKD2 in Drosophila sperm to substantiate the current model of PKD2 as cilium-associated, mechano-/chemo-sensitive cation channel. We show that Drosophila PKD2 (CG6504) is a conserved cation channel of the PKD2 family that localizes to sperm flagellar cilia where it is required for responding to signals that regulate asymmetric flagellar motility and directional sperm movement. This Drosophila PKD2 function appears to be analogous to mammalian PKD2 function in the motile nodal cilia. Directional beating of nodal cilia, which contain PKD2, is required for left-right axis determination in mammals. The goals of this proposal are to elucidate PKD2 channel regulation and signaling through structure-function analyses of the Drosophila PKD2 protein, phosphoproteomic analyses of PKD2-dependent downstream protein phosphorylation. and genetic analyses of candidate kinases and phosphoproteins in the pathway. The proposed research will identify structural elements involved in PKD2 channel regulation and function in vivo in a ciliary context, and will also identify PKD2-dependent downstream phosphoproteins and use them to delineate a genetic pathway for PKD2 signaling and function. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK071073-01A1
Application #
7039270
Study Section
Cellular and Molecular Biology of the Kidney Study Section (CMBK)
Program Officer
Rasooly, Rebekah S
Project Start
2006-03-01
Project End
2006-08-14
Budget Start
2006-03-01
Budget End
2006-08-14
Support Year
1
Fiscal Year
2006
Total Cost
$69,916
Indirect Cost
Name
University of Alabama Birmingham
Department
Public Health & Prev Medicine
Type
Schools of Public Health
DUNS #
063690705
City
Birmingham
State
AL
Country
United States
Zip Code
35294
Lu, Xiangyi (2013) Fluorescent imaging of Drosophila melanogaster sperm in the reproductive tract: a new model of flagellar motility. Methods Enzymol 525:131-48
Hirsch, Helmut V B; Lnenicka, Gregory; Possidente, Debra et al. (2012) Drosophila melanogaster as a model for lead neurotoxicology and toxicogenomics research. Front Genet 3:68
Lu, Xiangyi; Wang, Luan; Ruden, Douglas M (2012) Hsp90 inhibitors and the reduction of anti-cancer drug resistance by non-genetic and genetic mechanisms. Pharmaceuticals (Basel) 5:890-8
Lu, Xiangyi; Xiao, Li; Wang, Luan et al. (2012) Hsp90 inhibitors and drug resistance in cancer: the potential benefits of combination therapies of Hsp90 inhibitors and other anti-cancer drugs. Biochem Pharmacol 83:995-1004
Cingolani, Pablo; Patel, Viral M; Coon, Melissa et al. (2012) Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front Genet 3:35
Cingolani, Pablo; Platts, Adrian; Wang, Le Lily et al. (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6:80-92
Yang, Yong; Lu, Xiangyi (2011) Drosophila sperm motility in the reproductive tract. Biol Reprod 84:1005-15
Yang, Yong; Cochran, Deborah A; Gargano, Mary D et al. (2011) Regulation of flagellar motility by the conserved flagellar protein CG34110/Ccdc135/FAP50. Mol Biol Cell 22:976-87
Ruden, Douglas M; Chen, Lang; Possidente, Debra et al. (2009) Genetical toxicogenomics in Drosophila identifies master-modulatory loci that are regulated by developmental exposure to lead. Neurotoxicology 30:898-914
Platts, Adrian E; Land, Susan J; Chen, Lang et al. (2009) Massively parallel resequencing of the isogenic Drosophila melanogaster strain w(1118); iso-2; iso-3 identifies hotspots for mutations in sensory perception genes. Fly (Austin) 3:192-203

Showing the most recent 10 out of 11 publications