The long-term goals of this application are to develop selective inhibitors for an ER glycoprotein processing enzyme that plays a key role in quality control in the endoplasmic reticulum (ER) as broad-based therapeutics for glycoprotein misfolding diseases. This enzyme, ERalpha-mannosidase I (ERManl), acts as a key timer for ER residence for newly synthesized glycoproteins by initiating a rate-limiting step leading to a cascade of interactions that ultimately leads to the targeting of terminally misfolded glycoproteins for retrotranslocation to the cytoplasm and proteasomal disposal in a process known as """"""""ER-associated degradation"""""""" (ERAD). Many loss-of-function human genetic diseases result from mutations that cause delayed protein folding kinetics rather than generating terminally misfolded polypeptides. Recognition of the incompletely folded intermediates by the ERAD targeting machinery can lead to premature disposal of potentially functional glycoproteins and subsequently leads to pathology. Inhibition of the rate-determining steps in ERAD could provide a broad-based therapeutic approach for treatment of glycprotein misfolding diseases by delaying ERAD and providing sufficient time to complete the protein folding process. All of the known inhibitors of early mannose trimming steps, however, also have unacceptable serious side effects. They also inhibit glycan processing alpha-mannosidases in the Golgi complex and block maturation to complex type glycan structures on cell surface and secreted glycoproteins. Thus, the goals of this application are to identify selective ERManl inhibitors that can act to delay ERAD, rescue ER protein folding defects in human disease, and retain normal glycan maturation in the Golgi complex. The unique interdisciplinary team that we have assembled takes advantage of ongoing synergistic collaborative interactions between investigators at the University of Georgia and Baylor College of Medicine with expertise in the synthesis of selective glycosidase inhibitors (Boons), the biochemistry and structural biology of the ER and Golgi mannosidases (Moremen), and cell-based assays for a human glycoprotein misfolding disorder, alpha1-antitrypsin deficiency (Sifers). Promising leads will also be evaluated in established lysosomal storage disease models by collaborators (Amicus).
Three specific aims are proposed including 1) the directed rational and combinatorial synthesis of analogs of alpha-mannosidase inhibitors with selectivity toward ERManl, 2) high-throughput screens combined with detailed biochemical and structural analysis to assess selectivity and effectiveness of the inhibitor compounds in blocking ERManl but not Golgi glycan maturation, and 3) cell-based assays to assess chemical chaperone effects of mannosidase inhibitors in the rescue of mutant alpha1-antitrypsin secretion and lysosomal enzyme targeting and without blockage of N-glycan maturation. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK075322-03
Application #
7474680
Study Section
Special Emphasis Panel (ZRG1-BST-L (50))
Program Officer
Mckeon, Catherine T
Project Start
2006-08-15
Project End
2011-07-31
Budget Start
2008-08-01
Budget End
2009-07-31
Support Year
3
Fiscal Year
2008
Total Cost
$477,308
Indirect Cost
Name
University of Georgia
Department
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Xiang, Yong; Karaveg, Khanita; Moremen, Kelley W (2016) Substrate recognition and catalysis by GH47 ?-mannosidases involved in Asn-linked glycan maturation in the mammalian secretory pathway. Proc Natl Acad Sci U S A 113:E7890-E7899
Zhou, Tao; Frabutt, Dylan A; Moremen, Kelley W et al. (2015) ERManI (Endoplasmic Reticulum Class I ?-Mannosidase) Is Required for HIV-1 Envelope Glycoprotein Degradation via Endoplasmic Reticulum-associated Protein Degradation Pathway. J Biol Chem 290:22184-92
Pan, Shujuan; Cheng, Xiaoyun; Sifers, Richard N (2013) Golgi-situated endoplasmic reticulum ?-1, 2-mannosidase contributes to the retrieval of ERAD substrates through a direct interaction with ?-COP. Mol Biol Cell 24:1111-21
Moremen, Kelley W; Tiemeyer, Michael; Nairn, Alison V (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13:448-62
Rafiq, Muhammad Arshad; Kuss, Andreas W; Puettmann, Lucia et al. (2011) Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am J Hum Genet 89:176-82
Pan, Shujuan; Wang, Shufang; Utama, Budi et al. (2011) Golgi localization of ERManI defines spatial separation of the mammalian glycoprotein quality control system. Mol Biol Cell 22:2810-22
Zhu, Yanping; Suits, Michael D L; Thompson, Andrew J et al. (2010) Mechanistic insights into a Ca2+-dependent family of alpha-mannosidases in a human gut symbiont. Nat Chem Biol 6:125-32
Termine, Daniel J; Moremen, Kelley W; Sifers, Richard N (2009) The mammalian UPR boosts glycoprotein ERAD by suppressing the proteolytic downregulation of ER mannosidase I. J Cell Sci 122:976-84
Mallya, Meera; Phillips, Russell L; Saldanha, S Adrian et al. (2007) Small molecules block the polymerization of Z alpha1-antitrypsin and increase the clearance of intracellular aggregates. J Med Chem 50:5357-63