Integrins, the principal receptors that mediate cell-ECM interactions, are composed of heterodimeric transmembrane and subunits. The 18 and 8 subunits found in mammals combine in a restricted manner to form specific dimers with different ligand binding properties. 1, the most abundantly expressed integrin subunit in the kidney, binds at least 12 subunits. Its short cytoplasmic tail interacts with multiple intracellular molecules tht promote integrin- mediated adhesion, migration and signaling. The best defined of these proteins are talins and kindlins, which we and others showed are required for normal integrin function. These proteins bind to two canonical NPXY motifs found in all integrin cytoplasmic tails: talins to the membrane proximal and kindlins to the membrane distal motifs. In the last funding period, we utilized integrin beta1flox/flox mice to demonstrate that this integrin subunit s required for normal uretereic bud (UB) development, as deleting it using hoxb7cre mice resulted in severe abnormalities in branching morphogenesis. We further showed that mutating canonical NPXY motifs of the integrin 1 cytoplasmic tail also resulted in abnormal UB development. Kidneys with a Y/A mutation in both motifs (thus affecting binding of talins and kindlins) are severely dysmorphic and dysplastic, but have a significantly less severe branching defect than the UB integrin 1-null mice. Thus a key unanswered question in the field of integrin biology and kidney development is how the NPXY motifs regulate integrin function and whether they have distinct functions from each other. We propose to answer this question by testing the hypothesis that binding of talins and kindlins to specific NPYX motifs of the integrin 1 cytoplasmic tail differentially regulates integrin functions required for normal UB development. This hypothesis will be tested by the following three specific aims. 1) Determine if talin binding to the membrane proximal NPXY motif of the integrin 1 cytoplasmic tail is required for normal UB development. 2) Determine if kindlin binding to the membrane distal NPXY motif of the integrin 1 cytoplasmic tail is required for normal UB development and function. 3) Define the mechanisms whereby integrin 1 NPXY motif binding proteins regulate collecting duct cell branching morphogenesis. Completion of these aims will help define the fundamental mechanisms whereby 1 integrins regulate renal tubule formation in the context of UB development. This has implications for our understanding of both congenital renal hypoplasia/dysplasia syndromes and adult renal diseases as UB branching is a key determinant of nephron number.

Public Health Relevance

We anticipate that this study will generate novel insights into the role of integrins and their binding partners, talins and kindlins in the development of the collecting system of the kidney. This knowledge is fundamental to our understanding of how the renal collecting system functions and could potentially define new etiologies for dysmorphic dysgenic kidneys in infants.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Hoshizaki, Deborah K
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Byron, Adam; Randles, Michael J; Humphries, Jonathan D et al. (2014) Glomerular cell cross-talk influences composition and assembly of extracellular matrix. J Am Soc Nephrol 25:953-66
Skrypnyk, Nataliya; Chen, Xiwu; Hu, Wen et al. (2014) PPAR* activation can help prevent and treat non-small cell lung cancer. Cancer Res 74:621-31
Elias, Bertha C; Mathew, Sijo; Srichai, Manakan B et al. (2014) The integrin ?1 subunit regulates paracellular permeability of kidney proximal tubule cells. J Biol Chem 289:8532-44
Bryan, Lisa; Ibrahim, Tod; Zent, Roy et al. (2014) The kidney research predicament. J Am Soc Nephrol 25:898-903
Chen, Xiwu; Wang, Hongtao; Liao, Hong-Jun et al. (2014) Integrin-mediated type II TGF-? receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. J Clin Invest 124:3295-310
Miller, Charles G; Pozzi, Ambra; Zent, Roy et al. (2014) Effects of high glucose on integrin activity and fibronectin matrix assembly by mesangial cells. Mol Biol Cell 25:2342-50
Lennon, Rachel; Byron, Adam; Humphries, Jonathan D et al. (2014) Global analysis reveals the complexity of the human glomerular extracellular matrix. J Am Soc Nephrol 25:939-51
Tian, Xuefei; Kim, Jin Ju; Monkley, Susan M et al. (2014) Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. J Clin Invest 124:1098-113
Pozzi, Ambra; Zent, Roy (2013) Integrins in kidney disease. J Am Soc Nephrol 24:1034-9
Natarajan, Chandramohan; Hata, Aaron N; Hamm, Heidi E et al. (2013) Extracellular loop II modulates GTP sensitivity of the prostaglandin EP3 receptor. Mol Pharmacol 83:206-16

Showing the most recent 10 out of 40 publications