Formation of the pituitary gland relies on the expression of extrinsic factors produced by the surrounding tissue and transcription factors intrinsic to the pituitary. These factors dictate the specification and proliferation of the 5 hormone producing cell types of the anterior pituitary gland. Developmental failure of the pituitary gland has serious consequences for human health. Most significantly, the disease multiple pituitary hormone deficiency (MPHD), results in absence of growth hormone producing cells, with at least one other hormone being affected. The clinical manifestations of MPHD include growth insufficiency and delayed sexual maturation. Although most cases of MPHD are due to unknown causes, loss of function of the Prop1df gene is the most commonly identified cause of MPHD. Propl is a paired like homeodomain transcription factor expressed exclusively in the developing pituitary. A mutation in this gene also leads to a loss of three pituitary cell types, somatotropes, thyrotropes, and lactotropes, in the Ames dwarf mouse (Prop1 df). We demonstrated that the cell loss in Prop1 mutant mice correlates with alterations in pattern or level of Notch gene expression. Notch2 protein is absent in these mutants, indicating that Notch2 is an effecter of Prop1 and may be involved in the emergence of terminally differentiated cell types during pituitary development. The Notch signaling pathway is an evolutionary conserved mechanism that controls cellular proliferation and differentiation in a broad spectrum of developmental systems. In humans, null mutations in Notch receptors would likely lead to prenatal lethality. However, mutations in Notch family members that subtly reduce or enhance its activity can disrupt the development of the spine and circulatory system and cause diseases including leukemia, Alagille syndrome and CADASIL. My recent studies have demonstrated that Notch receptors, ligands (Delta and Jagged), and immediate downstream transcriptional targets (Hes) are present in the developing pituitary, but their function in this system is unknown. The proposed studies will determine if Notch signaling is necessary and sufficient for pituitary cell specification using transgenic and knock-out mice to modulate Notch receptor activity. In addition, the specific role of the Notch pathway gene Hes1, a transcriptional repressor, will be defined through gain and loss of function analysis. Finally, novel downstream targets of Notch activation in the pituitary will be defined by screening the candidates Mash1 and p27. These studies will provide a greater understanding of how the pituitary gland develops to produce hormones that affect growth, fertility and metabolism. They may also reveal genetic causes of congenital pituitary hormone deficiency and pituitary tumorigenesis and offer novel insight into the function of Notch signaling in endocrine cell differentiation. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK076647-02
Application #
7351861
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Sato, Sheryl M
Project Start
2007-02-01
Project End
2012-01-31
Budget Start
2008-02-01
Budget End
2009-01-31
Support Year
2
Fiscal Year
2008
Total Cost
$269,792
Indirect Cost
Name
University of Illinois Urbana-Champaign
Department
Physiology
Type
Schools of Arts and Sciences
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Biehl, Matthew J; Kaylan, Kerim B; Thompson, Robert J et al. (2018) Cellular fate decisions in the developing female anteroventral periventricular nucleus are regulated by canonical Notch signaling. Dev Biol 442:87-100
Hekman, Jessica P; Johnson, Jennifer L; Edwards, Whitney et al. (2018) Anterior Pituitary Transcriptome Suggests Differences in ACTH Release in Tame and Aggressive Foxes. G3 (Bethesda) 8:859-873
Eckstrum, Kirsten S; Edwards, Whitney; Banerjee, Annesha et al. (2018) Effects of Exposure to the Endocrine-Disrupting Chemical Bisphenol A During Critical Windows of Murine Pituitary Development. Endocrinology 159:119-131
Biehl, Matthew Joseph; Raetzman, Lori Therese (2017) Developmental Origins of Hypothalamic Cells Controlling Reproduction. Semin Reprod Med 35:121-129
Eckstrum, Kirsten S; Weis, Karen E; Baur, Nicholas G et al. (2016) Icam5 Expression Exhibits Sex Differences in the Neonatal Pituitary and Is Regulated by Estradiol and Bisphenol A. Endocrinology 157:1408-20
Weis, Karen E; Raetzman, Lori T (2016) Isoliquiritigenin exhibits anti-proliferative properties in the pituitary independent of estrogen receptor function. Toxicol Appl Pharmacol 313:204-214
Kapali, Jyoti; Kabat, Brock E; Schmidt, Kelly L et al. (2016) Foxo1 Is Required for Normal Somatotrope Differentiation. Endocrinology 157:4351-4363
Edwards, Whitney; Nantie, Leah B; Raetzman, Lori T (2016) Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 245:1097-1106
Aujla, Paven K; Bogdanovic, Vedran; Naratadam, George T et al. (2015) Persistent expression of activated notch in the developing hypothalamus affects survival of pituitary progenitors and alters pituitary structure. Dev Dyn 244:921-34
Biehl, Matthew J; Raetzman, Lori T (2015) Rbpj-? mediated Notch signaling plays a critical role in development of hypothalamic Kisspeptin neurons. Dev Biol 406:235-46

Showing the most recent 10 out of 22 publications