Common to all forms of diabetes is the gradual loss of functional insulin-producing ?-cells in the endocrine pancreas. Understanding the development and function of the endocrine pancreas is fundamental to the development of novel therapeutics for this disease. Genetic studies have revealed that transcription factors play an essential role in regulating the establishment and maintenance of ?-cells. Islet-1 (Isl-1), a homeo- domain containing transcription factor expressed in embryonic foregut and later in adult islet cells, is essential for early endocrine cell differentiation. However, because of the early embryonic lethality of Isl-1 deficient mice, the roles of Isl-1 in the regulation of ?-cell growth, survival and function have not been addressed. In the past year, we have made significant progress to our understanding of the role of Isl-1 during second wave of endocrine cell differentiation using the Pdx1-Cre/Isl-1/LoxP/LoxP mice. Over the next five years we plan to investigate the role of Isl-1 at more specific developmental stages utilizing an inducible mouse model. We hypothesize that Isl-1 is required for postnatal ?-cell growth and/or survival as well as function and is required in ?-cells to regulate MafA and Insulin expression through direct activation of MafA and Insulin transcription.
In Aim 1 and 3, we will specifically test the role of Isl-1 during neonatal ?-cell remodeling and during adult ?-cell function using an inducible mouse model.
Aim 2 will determine the molecular mechanism by which Isl-1 regulates MafA and Insulin gene expression. These data will further our understanding of ?-cell biology and may lead to novel therapeutics for the treatment of diabetes mellitus. PROJECT NARRATIVE: Diabetes mellitus is a metabolic disorder that current affects over 180 million people worldwide. Replacement of lost or improperly functioning ?-cells represents the best possibility to cure, treat, or prevent diabetes. The experiments described in this application will help delineate the mechanisms controlling the growth and development of ?-cells and bring us closer to generating functional ?-cells for cell replacement therapy.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK078606-05
Application #
8282934
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
2008-07-01
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2012
Total Cost
$322,576
Indirect Cost
$110,629
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ediger, Benjamin N; Lim, Hee-Woong; Juliana, Christine et al. (2017) LIM domain-binding 1 maintains the terminally differentiated state of pancreatic ? cells. J Clin Invest 127:215-229
Terry, Natalie A; Lee, Randall A; Walp, Erik R et al. (2015) Dysgenesis of enteroendocrine cells in Aristaless-Related Homeobox polyalanine expansion mutations. J Pediatr Gastroenterol Nutr 60:192-9
Terry, Natalie A; Walp, Erik R; Lee, Randall A et al. (2014) Impaired enteroendocrine development in intestinal-specific Islet1 mouse mutants causes impaired glucose homeostasis. Am J Physiol Gastrointest Liver Physiol 307:G979-91
Ediger, Benjamin N; Du, Aiping; Liu, Jingxuan et al. (2014) Islet-1 Is essential for pancreatic ?-cell function. Diabetes 63:4206-17
Wilcox, Crystal L; Terry, Natalie A; Walp, Erik R et al. (2013) Pancreatic ?-cell specific deletion of mouse Arx leads to ?-cell identity loss. PLoS One 8:e66214
Schaffer, Ashleigh E; Taylor, Brandon L; Benthuysen, Jacqueline R et al. (2013) Nkx6.1 controls a gene regulatory network required for establishing and maintaining pancreatic Beta cell identity. PLoS Genet 9:e1003274
Hunter, Chad S; Dixit, Shilpy; Cohen, Tsadok et al. (2013) Islet ýý-, ýý-, and ýý-cell development is controlled by the Ldb1 coregulator, acting primarily with the islet-1 transcription factor. Diabetes 62:875-86
Wilcox, Crystal L; Terry, Natalie A; May, Catherine Lee (2013) Arx polyalanine expansion in mice leads to reduced pancreatic ?-cell specification and increased ?-cell death. PLoS One 8:e78741
Liu, Jingxuan; Walp, Erik R; May, Catherine Lee (2012) Elevation of transcription factor Islet-1 levels in vivo increases ýý-cell function but not ýý-cell mass. Islets 4:199-206
Du, Aiping; McCracken, Kyle W; Walp, Erik R et al. (2012) Arx is required for normal enteroendocrine cell development in mice and humans. Dev Biol 365:175-88

Showing the most recent 10 out of 17 publications