Podocytes are highly differentiated epithelial cells in the kidney glomerulus that possess extensively branched cell processes, interdigitating into the unique foot processes and slit diaphragms which function as key components of the filtration barrier. Genetic mutations in ACTN4 disrupt cytoskeletal structure of the podocytes and have been linked to several glomerular diseases. However, the normal function of ACTN4 in podocytes as well as the mechanism underlying disease-causing ACTN4 mutations is not clearly understood. Based on our preliminary data, we hypothesize that ACTN4 plays a role in both the nucleus and the cytoplasm and that ACTN4 is capable of modulating transcriptional activity of nuclear receptors in the nucleus of podocytes.
The Specific Aims are: 1) To characterize the role of ACTN4 in conditionally immortalized human podocytes (HPCs). We will knockdown endogenous ACTN4 and determine the effect on the expression of podocyte marker genes. We will also establish cell lines expressing ACTN4 to establish direct binding to selected target genes and globally identify its associated genes by ChIP (chromatin immunoprecipitation)-on-ChIP analyses. 2) To dissect the mechanisms by which ACTN4 and nuclear hormone receptors regulate the expression of nephrin. We will determine the sequence determinants within the nephrin promoter that are responsive to ACTN4, nuclear receptors, and their ligands by transient transfection reporter assays. We will verify these data by ChIP assays and delineate histone modification patterns in response to hormones. We will further test whether known human disease-linked PPAR mutations have an effect on podocytes. 3) To explore the role of FSGS- causing ACTN4 mutations on normal podocyte behavior and gene expression. Once we have established the normal functions of ACTN4 in Aims 1 &2, we will examine the disease-linked ACTN4 mutants and their role in transcriptional regulation, histone modifications, and hormone response using the nephrin promoter as a model. We anticipate that our studies on ACTN4 and its interacting proteins will uncover a previously underappreciated nuclear role for ACTN4 that is critical for podocyte functions and may have future therapeutic implications in podocyte diseases.

Public Health Relevance

One of the key functions of the kidney is to remove toxins and metabolic waste while preventing proteins larger than albumin from entering the urine. This process is mediated by highly specialized cells known as podocytes that produce critical components of the filtration barrier in glomeruli. Genetic mutations in a known cytoskeletal structural protein, ACTN4, have been linked to several glomerular diseases. We have identified a novel function of ACTN4 as a transcriptional coactivator in the nucleus that modulates the transcription of several hormone-sensitive genes. We will investigate the details of this nuclear function. We anticipate that our studies will uncover a previously underappreciated role for ACTN4 that is critical for podocyte functions and may have future therapeutic implications in kidney diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Rys-Sikora, Krystyna E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Case Western Reserve University
Schools of Medicine
United States
Zip Code
Guan, D; Lim, J H; Peng, L et al. (2014) Deacetylation of the tumor suppressor protein PML regulates hydrogen peroxide-induced cell death. Cell Death Dis 5:e1340
Guo, Shuang; Cheng, Xiwen; Lim, Jun-Hee et al. (2014) Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity. Mol Biol Cell 25:2485-98
Hsu, Kuo-Sheng; Kao, Hung-Ying (2013) Alpha-actinin 4 and tumorigenesis of breast cancer. Vitam Horm 93:323-51
Su, Yu-Ting; Gao, Chengzhuo; Liu, Yu et al. (2013) Monoubiquitination of filamin B regulates vascular endothelial growth factor-mediated trafficking of histone deacetylase 7. Mol Cell Biol 33:1546-60
Guan, D; Factor, D; Liu, Yu et al. (2013) The epigenetic regulator UHRF1 promotes ubiquitination-mediated degradation of the tumor-suppressor protein promyelocytic leukemia protein. Oncogene 32:3819-28
Cheng, Xiwen; Zhao, Xuan; Khurana, Simran et al. (2013) Microarray analyses of glucocorticoid and vitamin D3 target genes in differentiating cultured human podocytes. PLoS One 8:e60213
Hsu, Kuo-Sheng; Kao, Hung-Ying (2013) *-Transducin repeat-containing protein 1 (*-TrCP1)-mediated silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) protein degradation promotes tumor necrosis factor * (TNF*)-induced inflammatory gene expression. J Biol Chem 288:25375-86
Cheng, Xiwen; Guo, Shuang; Liu, Yu et al. (2013) Ablation of promyelocytic leukemia protein (PML) re-patterns energy balance and protects mice from obesity induced by a Western diet. J Biol Chem 288:29746-59
Khurana, Simran; Chakraborty, Sharmistha; Lam, Minh et al. (2012) Familial focal segmental glomerulosclerosis (FSGS)-linked ýý-actinin 4 (ACTN4) protein mutants lose ability to activate transcription by nuclear hormone receptors. J Biol Chem 287:12027-35
Khurana, Simran; Chakraborty, Sharmistha; Cheng, Xiwen et al. (2011) The actin-binding protein, actinin alpha 4 (ACTN4), is a nuclear receptor coactivator that promotes proliferation of MCF-7 breast cancer cells. J Biol Chem 286:1850-9

Showing the most recent 10 out of 19 publications