Skeletal muscle insulin resistance is nearly universal in type 2 diabetes (T2DM), and of the known diabetogenic risk factors, insulin resistance has one of the greatest predictive values for the development of T2DM. Therefore, interventions designed to reverse skeletal muscle insulin resistance are likely to be effective in preventing and treating this disease. Toll-like receptor (TLR) 4 and inflammatory pathways downstream of this receptor [IKK/IkB/NFkB and c-jun n-terminal kinase (JNK)] have been recently implicated in the pathogenesis of lipid-induced insulin resistance. However, it is not known whether insulin resistant subjects have abnormal TLR4 signaling in the skeletal muscle. The goal of this study is to examine whether TLR4 is implicated in the mechanism underlying skeletal muscle insulin resistance in human subjects. Using the insulin clamp technique with muscle biopsies, and a primary human muscle cell culture system, we plan to test the hypothesis that elevated TLR4 signaling plays an important role in the pathogenesis of lipid-mediated insulin resistance. The following Aims are proposed: 1) Determine whether insulin resistant subjects have abnormal TLR4 expression/content and TLR4-driven signaling in skeletal muscle and whether this predicts abnormalities in insulin signaling and insulin sensitivity;2) Determine whether an experimental elevation in circulating free fatty acids (FFAs) within a physiologic range, increases TLR4 expression/content and stimulates TLR4-driven signaling in muscle from lean normal glucose tolerant (insulin-sensitive) subjects;3) Determine whether the reduction of FFAs, brought about the antilipolytic drug Acipimox, improves TLR4 signaling in muscle from insulin resistant (obese and T2DM) subjects;4) Determine whether TLR4 mediates FFA-induced insulin resistance in human myotubes. These studies will yield new insights into the molecular mechanisms responsible for lipid-induced insulin resistance in muscle from human subjects.The skeletal muscle from subjects with obesity and type 2 diabetes is resistant to the effect of insulin, a hormone, which helps maintain glucose levels within a normal range. However, the cause for the insulin resistance in muscle is not well known. Recent studies done in animals suggest that increased tissue levels of a protein called TLR4 may play a role in the insulin resistance present in subjects with obesity and type 2 diabetes. In this project we plan to examine whether this protein (TLR4) is involved in the molecular mechanisms responsible for insulin resistance in muscle from human subjects.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK080157-05
Application #
8197321
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Abraham, Kristin M
Project Start
2008-01-01
Project End
2013-11-30
Budget Start
2011-12-01
Budget End
2013-11-30
Support Year
5
Fiscal Year
2012
Total Cost
$298,368
Indirect Cost
$97,447
Name
University of Texas Health Science Center San Antonio
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Hussey, Sophie E; Lum, Helen; Alvarez, Andrea et al. (2014) A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle. Diabetologia 57:582-91
Hussey, Sophie E; Liang, Hanyu; Costford, Sheila R et al. (2013) TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep 33:37-47
Liang, Hanyu; Tantiwong, Puntip; Sriwijitkamol, Apiradee et al. (2013) Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol 591:2897-909
Liang, Hanyu; Hussey, Sophie E; Sanchez-Avila, Alicia et al. (2013) Effect of lipopolysaccharide on inflammation and insulin action in human muscle. PLoS One 8:e63983
Jensen, Jorgen; Tantiwong, Puntip; Stuenaes, Jorid T et al. (2012) Effect of acute exercise on glycogen synthase in muscle from obese and diabetic subjects. Am J Physiol Endocrinol Metab 303:E82-9
Martinez, H G; Quinones, M P; Jimenez, F et al. (2011) Critical role of chemokine (C-C motif) receptor 2 (CCR2) in the KKAy + Apoe -/- mouse model of the metabolic syndrome. Diabetologia 54:2660-8
Deepa, Sathyaseelan S; Zhou, Lijun; Ryu, Jiyoon et al. (2011) APPL1 mediates adiponectin-induced LKB1 cytosolic localization through the PP2A-PKCzeta signaling pathway. Mol Endocrinol 25:1773-85
Ghosh, Sangeeta; Lertwattanarak, Raweewan; Lefort, Natalie et al. (2011) Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes 60:2051-60
Joya-Galeana, J; Fernandez, M; Cervera, A et al. (2011) Effects of insulin and oral anti-diabetic agents on glucose metabolism, vascular dysfunction and skeletal muscle inflammation in type 2 diabetic subjects. Diabetes Metab Res Rev 27:373-82
Bokov, Alex F; Garg, Neha; Ikeno, Yuji et al. (2011) Does reduced IGF-1R signaling in Igf1r+/- mice alter aging? PLoS One 6:e26891

Showing the most recent 10 out of 16 publications