Kidney fibrosis is the hallmark of chronic kidney disease (CKD). Despite aggressive management, CKD often progresses to end-stage renal disease, which costs the US >$40 billion dollars and >90,000 deaths annually. The current main therapy targeting the renin-angiotensin-aldosterone (aldo) system with drugs including Spironolactone often delays, but does not stop the progression. This is also true for all other drugs such as endothelin 1 (ET1) blocker Atrasentan. The ineffectiveness and side effects including hyperkalemia and edema necessitate identification of novel therapeutic targets for the development of more effective treatments. Factors modulating the aldo global effect from its primary action site connecting tubule/collecting duct (CNT/CD) may prove better targets. However, such genetic and epigenetic factors remain virtually unknown, partially because of the intrinsic limitations of the clinical studies. These limitations include lack of kidney biopsies to verify the status of the disease, impossibility of genetic manipulation in patients to establish th causative relationship, and impracticability through mutational analyses with blood DNA to identify somatic mutations, which occur at atypical high rate in human kidney. Our published and preliminary data suggest that 1) Patients with diabetic nephropathy (DN) and CKD may have mutations in histone H3 K79 methyltransferase hDOT1L and abolished H3 dimethylation (H3m2K79) in their kidney biopsies;2) Dot1a (encoded by Dot1l) represses ET1 and other aldo target genes. Aldo relieves Dot1a-mediated repression by multiple mechanisms;3) CNT/CD-specific ablation of Dot1l in Dot1lAC mice causes abolition of H3m2K79, upregulation of ET1, and development of severe kidney fibrosis throughout the whole kidney. Accordingly, in this proposal, we will develop genetic markers to overcome the above limitations. To this end, we will use kidney biopsies from patients with DN and CKD, our mouse models bearing intact or disrupted Dot1l and ET1 in the CNT/CD, and their CNT/CD primary cells in combination of cutting-edge technologies including laser capture microdissection, next generation sequencing, and in vivo lineage tracing.
Our specific aims are to study if DN and CKD patients have genetic defects in hDOT1L (Aim 1), study if Dot1l deletion accelerates kidney fibrosis in part by upregulating ET1 in mice (Aim 2), and study if Dot1a and ET1 modulate the global effect of aldo profibrotic action (Aim 3). Our studies may identify DOT1L as a novel repressor of ET1 and thus a new renoprotective factor, confirm loss of DOT1L function and thus H3m2K79 as an epigenetic driver of CKD, define Spironolactone + Atrasentan as a new effective combinational therapy of CKD, and lay the foundation of new genetic tests. If Dot1l and ET1 are genetically linked to CKD in humans, they may be exploited to develop genetic screening tests to identify patients at high risk of CKD and to determine their responsiveness to various aldo and ET1 inhibitors. Like ET1, DOT1L can also be considered as a potential new therapeutic target of CKD.

Public Health Relevance

The overall scientific goal is to establish functional loss of hDOT1L in humans or Dot1l in mice as an epigenetic driver of chronic kidney disease. We will use kidney biopsies from patients with diabetic nephropathy and chronic kidney disease, CNT/CD-specific Dot1l and/or ET1 knockout mice, and primary CNT/CD cells from these mice as model systems. We will take genetic, pharmacological, physiological, pathological, and molecular approaches to achieve our goal.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK080236-06A1
Application #
8759361
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Hoshizaki, Deborah K
Project Start
2007-12-01
Project End
2017-05-31
Budget Start
2014-09-08
Budget End
2015-05-31
Support Year
6
Fiscal Year
2014
Total Cost
$226,796
Indirect Cost
$76,796
Name
University of Texas Health Science Center Houston
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771594
City
Houston
State
TX
Country
United States
Zip Code
77225
Berrout, Jonathan; Mamenko, Mykola; Zaika, Oleg L et al. (2014) Emerging role of the calcium-activated, small conductance, SK3 K+ channel in distal tubule function: regulation by TRPV4. PLoS One 9:e95149
Li, Ju-Mei; Wu, Hongyu; Zhang, Wenzheng et al. (2014) The p97-UFD1L-NPL4 protein complex mediates cytokine-induced I*B* proteolysis. Mol Cell Biol 34:335-47
Zhang, Wenzheng; Yu, Zhiyuan; Wu, Hongyu et al. (2013) An Af9 cis-element directly targets Dot1a to mediate transcriptional repression of the ýýENaC gene. Am J Physiol Renal Physiol 304:F367-75
Zhang, Xi; Zhou, Qiaoling; Chen, Lihe et al. (2013) Mineralocorticoid receptor antagonizes Dot1a-Af9 complex to increase *ENaC transcription. Am J Physiol Renal Physiol 305:F1436-44
Wu, Hongyu; Chen, Lihe; Zhou, Qiaoling et al. (2013) Aqp2-expressing cells give rise to renal intercalated cells. J Am Soc Nephrol 24:243-52
Zhang, Weiru; Zhang, Yujin; Wang, Wei et al. (2013) Elevated ecto-5'-nucleotidase-mediated increased renal adenosine signaling via A2B adenosine receptor contributes to chronic hypertension. Circ Res 112:1466-78
Wu, Hongyu; Chen, Lihe; Zhang, Xi et al. (2013) Aqp5 is a new transcriptional target of Dot1a and a regulator of Aqp2. PLoS One 8:e53342
Chen, Lihe; Wu, Hongyu; Pochynyuk, Oleh M et al. (2011) Af17 deficiency increases sodium excretion and decreases blood pressure. J Am Soc Nephrol 22:1076-86
Wu, Hongyu; Chen, Lihe; Zhou, Qiaoling et al. (2011) AF17 facilitates Dot1a nuclear export and upregulates ENaC-mediated Na+ transport in renal collecting duct cells. PLoS One 6:e27429
Zhang, Zhijing; Huang, Le; Reisenauer, Mary Rose et al. (2010) Widely expressed Af17 is likely not required for embryogenesis, hematopoiesis, and animal survival. Genesis 48:693-706

Showing the most recent 10 out of 13 publications