Cardiovascular disease is the principal cause of death in patients with diabetes. In spite of ample epidemiological data linking diabetes and cardiovascular disease, the molecular mechanisms that underlie how hyperglycemia promotes atherosclerosis, remain poorly understood. The Liver X Receptors (LXRs) are transcription factors activated by oxidized forms of cholesterol (oxysterols) that serve as sensors of excessive intracellular cholesterol accumulation. In addition to their role in regulation of cholesterol and lipid homeostasis, the LXRs also modulate expression of key genes in glucose metabolism. We recently reported the surprising observation that glucose can bind the LXRs and activate LXR target genes in vivo. Their ability to bind both glucose and oxysterols hints that LXRs may represent a molecular connection between the diabetic hyperglycemic state and atherosclerosis. The proposed research will test the idea that LXRs act as dual oxysterol-glucose sensors in vivo. Elucidation of such a role is expected to enhance our understanding of the transcriptional mechanisms that link diabetes and atherosclerosis. Evaluation of the role of LXR as a dual oxysterol-glucose sensor will be facilitated by the identification of mutants that respond differentially to these two physiological ligands.
Specific Aim 1 is to use modeling to isolate and characterize in cell-based and biochemical assays LXR mutants with altered ligand responses. To understand how LXR integrates metabolic signals from two nutrients, and to enable guided design of LXR mutants, in Specific Aim 2 we will elucidate the structural basis of the LXR-glucose-oxysterol interaction.
In Specific Aim 3, the ability of LXR mutants with dissociated ligand responses to regulate endogenous LXR targets will be tested in cultured hepatocytes and selected mutants will be used to systematically profile the impact of LXR signaling on metabolic pathways.
In Specific Aim 4, LXR mutants with altered ligand responses will be used to create using gene targeting animal models to dissect the role of LXR in glucose and cholesterol metabolism in vivo. The ultimate goal of these studies is to use animals with engineered mutations to test the role of LXRs as glucose-oxysterol sensors in vivo. Future studies with mice expressing mutant LXRs will test the in vivo significance of LXR as a link between diabetes and atherosclerosis. We expect this work to enhance our understanding of how diabetes accelerates atherosclerosis, and to suggest novel therapeutic approaches to treat these conditions. Cardiovascular disease is a major complication of diabetes that accounts for more than 70% of all deaths in patients with diabetes. The risk of cardiovascular mortality is four times higher in individuals with diabetes than in nondiabetic individuals with similar levels of serum cholesterol. The long term goal of the proposed research is to advance our understanding of the cellular and molecular mechanisms that link diabetes and cardiovascular disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK081003-04
Application #
8055439
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Margolis, Ronald N
Project Start
2008-04-01
Project End
2013-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
4
Fiscal Year
2011
Total Cost
$371,458
Indirect Cost
Name
Scripps Research Institute
Department
Type
DUNS #
781613492
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Dominguez, Eduardo; Galmozzi, Andrea; Chang, Jae Won et al. (2014) Integrated phenotypic and activity-based profiling links Ces3 to obesity and diabetes. Nat Chem Biol 10:113-21
Chou, Wen-Ling; Galmozzi, Andrea; Partida, David et al. (2013) Identification of regulatory elements that control PPAR? expression in adipocyte progenitors. PLoS One 8:e72511
Galmozzi, Andrea; Mitro, Nico; Ferrari, Alessandra et al. (2013) Inhibition of class I histone deacetylases unveils a mitochondrial signature and enhances oxidative metabolism in skeletal muscle and adipose tissue. Diabetes 62:732-42
Cermenati, Gaia; Abbiati, Federico; Cermenati, Solei et al. (2012) Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation. J Lipid Res 53:300-10
Villanueva, Claudio J; Waki, Hironori; Godio, Cristina et al. (2011) TLE3 is a dual-function transcriptional coregulator of adipogenesis. Cell Metab 13:413-427
Cermenati, Gaia; Giatti, Silvia; Cavaletti, Guido et al. (2010) Activation of the liver X receptor increases neuroactive steroid levels and protects from diabetes-induced peripheral neuropathy. J Neurosci 30:11896-901
Zhu, Jun; Mounzih, Khalid; Chehab, Eric F et al. (2010) Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake. J Lipid Res 51:1312-24