Continual regeneration of the intestinal lining relies on stem and progenitor cells in sub-mucosal crypts, and intestinal disorders, including cancer, reflect dysfunction of these cells. Lgr5-expressing intestinal stem cells (ISC) replicate daily, producing bipotential progenitors (BP) that choose between alternative cell fates: enterocyte or secretory. This key cell fate decision is incompletely understood and the intestinal epithelium is a powerful model to investigate intermediate cell states. Therapeutic modulation of signaling pathways in the digestive tract also requires deeper appreciation of the underlying principles and mechanisms. Recent evidence reveals that crypt cells are considerably plastic, and in work supported by parent R01DK081113, we showed that broadly permissive chromatin underlies this plasticity.
Aim 1 of the parent R01 seeks to determine tissue-restricted enhancer elements and binding sites for the transcription factor ATOH1 in secretory progenitors because ATOH1 allocates cell fate by lateral inhibition. As mixed cell populations can and have addressed the question, this Aim does not need single-cell resolution.
The second Aim, however, investigates early ISC-derived BP, which are difficult to identify or characterize because they lack known molecular markers and information is lost in mixed-cell populations. Showing that single-cell analysis is well suited to advance project goals and address fundamental questions of broad interest, our preliminary single-cell gene expression analyses indicate that putative BP are a distinct subpopulation of Lgr5hi cells. Therefore, the first Specific Aim in this proposal is to identify and characterize these and other functionally distinct Lgr5+ ISC subpopulations. We will use single-cell RT-PCR to determine accurate transcript levels of ~275 genes carefully chosen to report cell lineage, replication status, surface markers, and differentiation states. We will alo measure these genes in specified secretory and enterocyte progenitors, purified by methods developed under the parent R01. We will build new analytical tools to determine cell relationships and hierarchies;preliminary data show that our experimental and computational approaches are feasible. Beyond gene expression, cells differ in surface markers and pathways for rapid intracellular signaling, and our second Specific Aim is to identify the basis for crypt cll heterogeneity in different signaling pathways using time-of-flight mass cytometry (CyTOF). Preliminary data reveal that AKT/S6 kinase signaling is confined to Lgr5hi ISC, quickly diminishing in BP and specified progenitors. We will substantively extend single-cell analysis by CyTOF to interrogate other signaling pathways and surface markers. For both Aims, we will rigorously test new hypotheses about cell subpopulations using crypt """"""""organoid"""""""" cultures, and we propose new computational methods for integrated analysis of single-cell data from our two orthogonal approaches. This robust 2-tiered investigation of single cells will inform understanding of intestinal self- renewal and develop a strategy for broad application toward other tissues and biomedical problems.

Public Health Relevance

Continual, life-long renewal of the intestinal lining is essential for health and occurs through specialized stem and progenitor cells that reside in crypts and produce all intestinal cell types. Disturbances in these specialized cells lead to cancer and other digestive disorders, and better treatments for these illnesses require improved understanding of fundamental properties and circuits in distinct subpopulations of stem and progenitor cells. These properties and specific genes or signals escape detection in usual studies of mixed cell populations. We propose advanced single-cell analyses of intestinal crypt cells to determine when and how individual stem and progenitor cells acquire the ability to generate diverse intestinal cell types.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-R (50))
Program Officer
Carrington, Jill L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Banerjee, Kushal K; Saxena, Madhurima; Kumar, Namit et al. (2018) Enhancer, transcriptional, and cell fate plasticity precedes intestinal determination during endoderm development. Genes Dev 32:1430-1442
Saxena, Madhurima; Roman, Adrianna K San; O'Neill, Nicholas K et al. (2017) Transcription factor-dependent 'anti-repressive' mammalian enhancers exclude H3K27me3 from extended genomic domains. Genes Dev 31:2391-2404
Tsoucas, Daphne; Yuan, Guo-Cheng (2017) Recent progress in single-cell cancer genomics. Curr Opin Genet Dev 42:22-32
Mathur, Radhika; Alver, Burak H; San Roman, Adrianna K et al. (2017) ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet 49:296-302
Yuan, Guo-Cheng; Cai, Long; Elowitz, Michael et al. (2017) Challenges and emerging directions in single-cell analysis. Genome Biol 18:84
Jadhav, Unmesh; Saxena, Madhurima; O'Neill, Nicholas K et al. (2017) Dynamic Reorganization of Chromatin Accessibility Signatures during Dedifferentiation of Secretory Precursors into Lgr5+ Intestinal Stem Cells. Cell Stem Cell 21:65-77.e5
Jadhav, Unmesh; Shivdasani, Ramesh A (2016) Natural Selection, Crypt Fitness, and Pol III Dependency in theĀ Intestine. Cell Mol Gastroenterol Hepatol 2:714-715
Kim, Tae-Hee; Shivdasani, Ramesh A (2016) Stomach development, stem cells and disease. Development 143:554-65
Jadhav, Unmesh; Nalapareddy, Kodandaramireddy; Saxena, Madhurima et al. (2016) Acquired Tissue-Specific Promoter Bivalency Is a Basis for PRC2 Necessity in Adult Cells. Cell 165:1389-1400
Kim, Tae-Hee; Saadatpour, Assieh; Guo, Guoji et al. (2016) Single-Cell Transcript Profiles Reveal Multilineage Priming in Early Progenitors Derived from Lgr5(+) Intestinal Stem Cells. Cell Rep 16:2053-2060

Showing the most recent 10 out of 25 publications