Diabetic nephropathy (DN) is one of the major complications of diabetes that can lead to end stage renal disease. The rates of DN are escalating and new strategies are needed to combat this debilitating condition. Key features of DN include increased glomerulosclerosis and mesangial cell expansion due to the accumulation of extracellular matrix (ECM) proteins. Although several biochemical pathways and key profibrotic factors, such as transforming growth factor-b1 (TGFb1) and the ECM protein collagen, have been implicated in the pathogenesis of DN, the subtle molecular mechanisms regulating them are unclear. In the previous funding period we identified new roles for renal microRNAs (miRNAs) in the pathogenesis of DN. We demonstrated that miR-192 can mediate TGF b1 induced collagen expression in mesangial cells (MCs), and that miR-192 deficiency can protect against key features of DN in mouse models. Since then, renal miRNAs have gained increased attention in various renal diseases, and are also being recognized as promising clinical biomarkers for DN. However, we still have only limited knowledge about the spectrum of miRNAs that modify DN progression and their therapeutic potential. Our objective is to address this gap in knowledge by identifying the roles of newly identified miRNAs and their host genes in the pathogenesis of DN, and translational approaches to harness their potential to meet the critical need for better therapies for DN. We will follow up on extensive new preliminary data showing that a novel Mega Cluster of miRNAs is collectively up-regulated by TGFb1 and high glucose in vitro in MCs, and in diabetic mice glomeruli in vivo. Furthermore, we find that this cluster is embedded within a long transcript and both are regulated by stress responsive transcription factors, whereas target genes of multiple component miRNAs regulate protein translation, hypertrophy and cellular stress. The central hypothesis is that up-regulation of the mega cluster of miRNAs diabetic conditions suppresses the expression of their key functional gene targets, inducing glomerular MC hypertrophy, protein synthesis and fibrosis, and thereby augmenting DN progression. This hypothesis will be tested via three Specific Aims which will: i) examine the molecular mechanisms of regulation of key miRNAs within the mega cluster; ii) identify the functional roles of these miRNAs and key common target genes in MCs, and iii) finally evaluate novel gene targeting as well as translational approaches to down-regulate this miRNA cluster genomic region in mouse models of DN. The results of these conceptually innovative and clinically significant studies can define currently unknown regulatory factors in the diabetic kidney that could lead to the identification of critically needed new therapeutic targets for DN and thus have a positive impact to advance the field.

Public Health Relevance

Diabetes is highly prevalent in the USA and a major healthcare problem especially because it is associated with several debilitating complications. Diabetic nephropathy is one of the major and common complications of both type 1 and type 2 diabetes which can lead to kidney failure as well as painful and costly dialysis. This project proposes to identify novel new mechanisms involved in the progression of diabetic nephropathy that could lead to the development of sorely needed newer biomarkers and therapies to reduce the morbidity and mortality of this diabetic complication.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK081705-08
Application #
9068879
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Rys-Sikora, Krystyna E
Project Start
2008-07-01
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Beckman Research Institute/City of Hope
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Das, Sadhan; Reddy, Marpadga A; Senapati, Parijat et al. (2018) Diabetes Mellitus-Induced Long Noncoding RNA Dnm3os Regulates Macrophage Functions and Inflammation via Nuclear Mechanisms. Arterioscler Thromb Vasc Biol 38:1806-1820
Leung, Amy; Natarajan, Rama (2018) Long Noncoding RNAs in Diabetes and Diabetic Complications. Antioxid Redox Signal 29:1064-1073
Das, Sadhan; Zhang, Erli; Senapati, Parijat et al. (2018) A Novel Angiotensin II-Induced Long Noncoding RNA Giver Regulates Oxidative Stress, Inflammation, and Proliferation in Vascular Smooth Muscle Cells. Circ Res 123:1298-1312
Leung, Amy; Amaram, Vishnu; Natarajan, Rama (2018) Linking diabetic vascular complications with LncRNAs. Vascul Pharmacol :
Gangwar, Roopesh S; Rajagopalan, Sanjay; Natarajan, Rama et al. (2018) Noncoding RNAs in Cardiovascular Disease: Pathological Relevance and Emerging Role as Biomarkers and Therapeutics. Am J Hypertens 31:150-165
Das, Sadhan; Senapati, Parijat; Chen, Zhuo et al. (2017) Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells. Nat Commun 8:1467
Kato, Mitsuo; Wang, Mei; Chen, Zhuo et al. (2016) An endoplasmic reticulum stress-regulated lncRNA hosting a microRNA megacluster induces early features of diabetic nephropathy. Nat Commun 7:12864
Chen, Zhuo; Miao, Feng; Paterson, Andrew D et al. (2016) Epigenomic profiling reveals an association between persistence of DNA methylation and metabolic memory in the DCCT/EDIC type 1 diabetes cohort. Proc Natl Acad Sci U S A 113:E3002-11
Yuan, Hang; Reddy, Marpadga A; Deshpande, Supriya et al. (2016) Epigenetic Histone Modifications Involved in Profibrotic Gene Regulation by 12/15-Lipoxygenase and Its Oxidized Lipid Products in Diabetic Nephropathy. Antioxid Redox Signal 24:361-75
Bhatt, Kirti; Kato, Mitsuo; Natarajan, Rama (2016) Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 310:F109-18

Showing the most recent 10 out of 47 publications