Diabetes mellitus is an escalating health problem throughout the world. Significant research efforts are currently underway to understand and prevent the pathogeneses of Type 1 and Type 2 diabetes, which both lead to the gradual loss of functional insulin-producing beta cells. In particular, many researchers are exploring methods to exploit embryonic and adult stem cells or unrelated somatic cell populations as alternative sources of insulin-producing beta cells. Progress is being made with many of these approaches;however, the efficient production of large numbers of fully functional beta cells has not yet been achieved, primarily due to our incomplete understanding of the mechanisms regulating normal pancreas development. We have identified Nkx2.2 as a critical regulator of the specification and differentiation of defined islet cell populations in mice. Notably, NKX2.2 null mutations in human patients have been identified;the pancreatic defects resemble those seen in Nkx2.2 null mice, confirming the importance of our studies for also understanding human pancreas development and disease. We have verified that Nkx2.2 functions as a transcriptional activator and repressor to regulate pancreas cell specification and islet cell identity. In particular, we identified and characterized many novel targets of Nkx2.2, including the essential islet cell specific regulators, NeuroD and Arx. We have also determined that Nkx2.2 is part of a large repressor complex that maintains beta cell identity in the embryo and in the adult. Our new preliminary data suggests that Nkx2.2 functions upstream of the Neurogenin3+ endocrine precursor population to regulate their differentiation potentials. Furthermore, we have determined that Nkx2.2 physically interacts with the maintenance DNA methyltransferase DNMT1 through its NK2-specific domain (SD) domain to mediate promoter- and cell-specific DNA methylation in the islet. Finally, we have demonstrated that Nkx2.2 mediates several distinct essential functions in the embryonic and adult pancreas through differential cell-specific activities. The goal of this application is to futher dissect the Nkx2.2 mediated regulatory and epigenetic events that are essential for islet cell specification, maintenance of islet cell identity and beta cell function.
In Specific Aim 1 we will determine how the differentiation potential of Neurogenin3+ endocrine precursor populations is regulated.
In Specific Aim 2 we will determine how Nkx2.2 initiates and maintains islet cell identity, and mediates adult beta cell maturation and function.
In Specific Aim 3 we will determine how Nkx2.2 functions intersect with DNA methylation to exert distinct cell-specific regulatory functions in the pancreatic islet. Our long-term goal is to understand the intersecting transcriptional and epigenetic regulatory programs that specify and maintain functional islet cell types.

Public Health Relevance

The pancreatic islet plays a critical role in the regulation of glucose metabolism;dysfunctions associated with the islet beta cells contribute to all forms of diabetes. The studies proposed in this grant will identify and characterize the primary transcriptional and epigenetic pathways that regulate the specification, maintenance and function of the islet cell populations, particularly beta cells. Our findings will aid the generatin beta cells from alternative cell sources and improve our ability to maintain optimal beta cell identity and functions.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sato, Sheryl M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Columbia University (N.Y.)
Schools of Medicine
New York
United States
Zip Code
Ioannou, Marilia; Serafimidis, Ioannis; Arnes, Luis et al. (2013) ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 374:153-63
Mastracci, Teresa L; Anderson, Keith R; Papizan, James B et al. (2013) Regulation of Neurod1 contributes to the lineage potential of Neurogenin3+ endocrine precursor cells in the pancreas. PLoS Genet 9:e1003278
Mastracci, Teresa L; Lin, Chyuan-Sheng; Sussel, Lori (2013) Generation of mice encoding a conditional allele of Nkx2.2. Transgenic Res 22:965-72
Arnes, Luis; Leclerc, Kevin; Friel, Jessica M et al. (2012) Generation of Nkx2.2:lacZ mice using recombination-mediated cassette exchange technology. Genesis 50:612-24
Jeong, Yongsu; Dolson, Diane K; Waclaw, Ronald R et al. (2011) Spatial and temporal requirements for sonic hedgehog in the regulation of thalamic interneuron identity. Development 138:531-41
Papizan, James B; Singer, Ruth A; Tschen, Shuen-Ing et al. (2011) Nkx2.2 repressor complex regulates islet *-cell specification and prevents *-to-*-cell reprogramming. Genes Dev 25:2291-305
Hill, Jonathon T; Anderson, Keith R; Mastracci, Teresa L et al. (2011) Novel computational analysis of protein binding array data identifies direct targets of Nkx2.2 in the pancreas. BMC Bioinformatics 12:62
Mastracci, Teresa L; Wilcox, Crystal L; Arnes, Luis et al. (2011) Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol 359:1-11