Hepatic steatosis, or fatty liver, is strongly associated with metabolic syndrome. Understanding the mechanism of hepatic steatosis will help to prevent and treat this common medical problem. The aryl hydrocarbon receptor (AhR), highly expressed in the liver, is a transcriptional factor originally cloned as a """"""""xenobiotic receptor."""""""" AhR regulates the expression of xenobiotic enzymes by binding to the dioxin response elements (DREs) present in target gene promoters. Subsequent studies suggest that AhR may also have endobiotic functions by affecting physiology, but the molecular mechanism for the endobiotic function of AhR remains largely unknown. Our preliminary results showed that: (1) Transgenic mice expressing the constitutively activated AhR (CA-AhR) exhibited hepatic steatosis when maintained in chow diet, a phenotype that has been recapitulated in wild type mice treated with the AhR agonist;(2) Activation of AhR in transgenic mice induced the expression of CD36/FAT, a fatty acid transporter important for hepatic fatty acid uptake and steatosis;(3) Activation of CD36 gene expression was also seen in wild type mice treated with the AhR agonist and this activation was abolished in AhR-/- mice;(4) Treatment of human hepatoma cells with AhR agonist induced the expression of CD36 and increased the uptake of free fatty acids;(5) The mouse and human CD36 gene promoters were activated by AhR;(6) Activation of AhR inhibited very-low density lipoprotein (VLDL)-triglyceride secretion;(7) Activation of AhR suppressed peroxisomal fatty acid 2-oxidation;and 8) CA-AhR transgenic mice in third generation of backcross to C57BL/6J showed spontaneous steatosis and signs of compromised glucose tolerance. Based on our preliminary data, we hypothesize that activation of AhR promotes hepatic steatosis through multiple mechanisms, including the activation of fatty acid transporter CD36, suppression of fatty acid oxidation, and inhibition of export of triglycerides. By using the """"""""gain-of-function"""""""" CA-AhR transgenic, """"""""loss-of-function"""""""" AhR-/- and CD36-/-, and AhR ligand-treated wild type mice, we propose four specific aims: (1) To determine whether activation of AhR is sufficient and necessary to induce hepatic steatosis;(2) To characterize AhR-induced hepatic steatosis;(3) To determine whether the fatty acid transporter CD36 is necessary for the steatotic effect of AhR;and (4) To determine the molecular mechanism by which AhR regulates the expression of CD36. To our knowledge, the current study represents the first attempt to determine the pathophysiological role of AhR in hepatic steatosis and associated metabolic abnormalities. The tetracycline inducible AhR transgenic mice, exhibiting fatty liver even when maintained in chow diet, represent a novel, convenient and reversible model of nonalcoholic fatty liver disease (NAFLD). It is hoped that results from this study may help to establish AhR and its target fatty acid transporter as novel therapeutic targets for fatty liver in human patients.

Public Health Relevance

The aryl hydrocarbon receptor (AhR) is a transcriptional factor originally cloned as a """"""""xenobiotic receptor"""""""" to sense xenobiotic toxicants. The goal of this study is to determine whether AhR has an endobiotic role in promoting hepatic steatosis. Hepatic steatosis, or fatty liver, is a common medical problem strongly associated with metabolic syndrome. It is hoped that results from this study may help to establish AhR as a novel therapeutic target for fatty liver in human patients.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Doo, Edward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Pharmacy
United States
Zip Code
Garbacz, Wojciech G; Lu, Peipei; Miller, Tricia M et al. (2016) Hepatic Overexpression of CD36 Improves Glycogen Homeostasis and Attenuates High-Fat Diet-Induced Hepatic Steatosis and Insulin Resistance. Mol Cell Biol 36:2715-2727
Wei, Yuan; Tang, Chenxiao; Sant, Vinayak et al. (2016) A Molecular Aspect in the Regulation of Drug Metabolism: Does PXR-Induced Enzyme Expression Always Lead to Functional Changes in Drug Metabolism? Curr Pharmacol Rep 2:187-192
Lu, Peipei; Xie, Wen (2016) Reply. Hepatology 63:1397-8
Jiang, Mengxi; Klein, Marcus; Zanger, Ulrich M et al. (2016) Inflammatory regulation of steroid sulfatase: A novel mechanism to control estrogen homeostasis and inflammation in chronic liver disease. J Hepatol 64:44-52
Lu, Peipei; Yan, Jiong; Liu, Ke et al. (2015) Activation of aryl hydrocarbon receptor dissociates fatty liver from insulin resistance by inducing fibroblast growth factor 21. Hepatology 61:1908-19
Cheng, Qiuqiong; Inaba, Yuka; Lu, Peipei et al. (2015) Chronic activation of FXR in transgenic mice caused perinatal toxicity and sensitized mice to cholesterol toxicity. Mol Endocrinol 29:571-82
Hu, Bingfang; Guo, Yan; Garbacz, Wojciech G et al. (2015) Fatty acid binding protein-4 (FABP4) is a hypoxia inducible gene that sensitizes mice to liver ischemia/reperfusion injury. J Hepatol 63:855-62
Yan, Jiong; Chen, Baian; Lu, Jing et al. (2015) Deciphering the roles of the constitutive androstane receptor in energy metabolism. Acta Pharmacol Sin 36:62-70
Gao, Jie; Yan, Jiong; Xu, Meishu et al. (2015) CAR Suppresses Hepatic Gluconeogenesis by Facilitating the Ubiquitination and Degradation of PGC1α. Mol Endocrinol 29:1558-70
Ou, Zhimin; Jiang, Mengxi; Hu, Bingfang et al. (2014) Transcriptional regulation of human hydroxysteroid sulfotransferase SULT2A1 by LXRα. Drug Metab Dispos 42:1684-9

Showing the most recent 10 out of 28 publications