Acute kidney injury (AKI) caused either by ischemia reperfusion (IR) or by a nephrotoxin is common in hospitalized patients and is associated with an overall mortality rate of up to 50% in the ICU, Despite the high incidence and high mortality rate, there is no specific treatment and the pathophysiology is incompletely understood. Emerging evidence suggests that an antioxidant and oxidant imbalance (or oxidative stress) leading to cell injury, inflammatory, and immune responses participates in the pathogenesis of AKI. Thus, identifying and understanding the functions and regulation of molecular effectors that regulate oxidative stress in response to ischemic and nephrotoxic insults could lead to novel therapeutic opportunities in AKI. In preliminary studies, we found that mice with genetic disruption of Nrf2 (a b-ZIP transcription factor critical for the induction of several antioxidant and cytoprotective gene expression) are more susceptible to IRI-induced vascular permeability and inflammatory responses, as compared with wild type (Nrf2+/+) mice. Nrf2-deficient (Nrf2-/-) mice were also more susceptible to cisplatin-induced nephrotoxic AKI as compared to wild type controls. Antioxidant supplementation significantly improved renal function and histology in Nrf2-/- mice. Based on these preliminary data, we hypothesize that endogenous Nrf2 confers protection in AKI and augmentation of Nrf2 activity is a potential protective strategy for both ischemic and nephrotoxic AKI. As the translocation of Nrf2 from the cytoplasm to the nucleus is critical for ARE- mediated transcriptional response following stressful stimuli, we propose that perturbation in either specific signaling or factors controlling the Nrf2 expression and activation can result in lower levels of antioxidant enzyme expression, thereby contributing to and/or enhancing suscepitibility to the development of AKI. To test these hypotheses, we propose the following three specific aims: 1) Elucidate molecular mechanisms (upstream signals) that control the activation of Nrf2 in response to ischemia reperfusion, 2) Define the contribution of oxidative stress elicited by infiltrating leukocytes compared to resident kidney cells in the development and/or perpetuation of AKI using gene targeted Nrf2 mice, and 3) Determine whether boosting Nrf2 activation using a pharmacologic and a genetic approach confers protection against AKI. Our overall findings obtained from genetically manipulated mouse models and cell culture studies should yield extremely important insights underlying AKI and could have important implications to identify the effector mechanisms causing susceptibility to AKI. The application is developed in a multidisciplinary team approach combining strengths in transcriptional biology, in vitro and in vivo AKI models, and inflammation.

Public Health Relevance

Acute kidney injury is a major cause of mortality, morbidity, and health care utilization cost. The current proposal utilizes both cell culture and genetically manipulated mouse models, and novel reagents to elucidate the mechanisms and therapeutic potential of the Nrf2-Keap-ARE pathway that regulate antioxidant and oxidant imbalance (oxidative stress) during AKI in mice. The proposed studies will provide strong foundation to enable us to target the Nrf2-Keap1-ARE pathway for future clinical trials in acute kidney injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK084445-01A1
Application #
7898113
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Kimmel, Paul
Project Start
2010-06-01
Project End
2014-05-31
Budget Start
2010-06-01
Budget End
2011-05-31
Support Year
1
Fiscal Year
2010
Total Cost
$480,130
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Potteti, Haranatha R; Tamatam, Chandramohan R; Marreddy, Rakesh et al. (2016) Nrf2-AKT interactions regulate heme oxygenase 1 expression in kidney epithelia during hypoxia and hypoxia-reoxygenation. Am J Physiol Renal Physiol 311:F1025-F1034
Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha et al. (2016) Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice. BMC Nephrol 17:110
Noel, Sanjeev; Martina, Maria N; Bandapalle, Samatha et al. (2015) T Lymphocyte-Specific Activation of Nrf2 Protects from AKI. J Am Soc Nephrol 26:2989-3000
Noel, Sanjeev; Hamad, Abdel R A; Rabb, Hamid (2015) Reviving the promise of transcription factor Nrf2-based therapeutics for kidney diseases. Kidney Int 88:1217-1218
Liu, Manchang; Reddy, Narsa M; Higbee, Elizabeth M et al. (2014) The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice. Kidney Int 85:134-41