A variety of animal, cell culture and molecular studies have correlated increased oxidative stress and the accumulation of reactive oxygen species (ROS) such as superoxide anion and hydroxyl radicals to type 2 diabetes. While appreciated for years, it was unclear if oxidative stress / ROS was a casual or causal factor in the etiology of the disease. However, more recent work utilizing a variety of loss and gain of function analyses have indicated that oxidative stress is causally linked to insulin resistance but that the molecular mechanisms remain obscure. This application will profile new and compelling findings from our laboratories using animal and cell culture models that establish a molecular linkage between the antioxidant defense system in adipose cells with mitochondrial function, oxidative phosphorylation, signal transduction and the development of insulin resistance. We present a novel hypothesis supported by preliminary studies from genomic, proteomic, metabolomic and molecular analyses that point toward the covalent modification of mitochondrial proteins with bioactive lipids and the oxidation of mitochondrial thioredoxin as central to the process. Initiating this oxidative stress challenge are new findings that describe the tumor necrosis factor 1 (TNF1) dependent down regulation of glutathione S-transferase A4 setting the stage for a molecular cascade of events that activates the c-JUN NH2-terminal kinase (JNK), an established regulator of insulin sensitivity. Moreover, we present new findings that demonstrate that the down regulation of GSTA4 is not merely a process observed in animal models of insulin resistance but also occurs selectively in obese, insulin resistant, but not obese, insulin sensitive humans thereby providing a molecular differentiation between obesity and insulin resistance. This application builds on recent evidence obtained in the Bernlohr, Griffin and Arriaga laboratories that functionally links oxidative stress to insulin resistance. These studies in sum lead to our central hypothesis: decreased expression of GSTA4 in adipocytes leads to increased carbonylation of multiple protein targets. Carbonylation in turn initiates a cascade of molecular events leading to mitochondrial dysfunction and ROS production. ROS production leads to the oxidation of Thioredoxin 2 (Trx2) and the activation of Trx2-ASK1-JNK/p38 signaling system contributing to insulin resistance. To test this hypothesis, the following four specific aims are proposed:
Specific Aim 1. Evaluate mitochondrial protein carbonylation and identify target proteins.
Specific Aim 2. Assess ROS production and mitochondrial electron transport system in cell culture and animal models.
Specific Aim 3. Develop and characterize aP2-HA-GSTA4 transgenic mice maintained on low and high fat diets.
Specific Aim 4. Characterize cellular metabolism and the Trx2-ASK1-JNK pathway in animal and cell culture models.

Public Health Relevance

A variety of animal, cell culture and molecular studies have correlated increased oxidative stress and the accumulation of reactive oxygen species (ROS) to type 2 diabetes. While appreciated for years, it was unclear if oxidative stress / ROS was a casual or causal factor in the etiology of the disease. This application will profile new and compelling findings from our laboratories using animal and cell culture models that establish a molecular linkage between the antioxidant defense system in adipose cells with mitochondrial function, oxidative phosphorylation, signal transduction and the development of insulin resistance. We present new findings that demonstrate that the down regulation of GSTA4 is not merely a process observed in animal models of insulin resistance but also occurs selectively in obese, insulin resistant, but not obese, insulin sensitive humans thereby providing a molecular differentiation between obesity and insulin resistance. If the hypothesis is proven to be correct, the study would be immediately translatable to human biology and afford a new view of how type 2 diabetes may be combated.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK084669-03
Application #
8298244
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Abraham, Kristin M
Project Start
2010-08-01
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
3
Fiscal Year
2012
Total Cost
$310,697
Indirect Cost
$103,044
Name
University of Minnesota Twin Cities
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Xu, Qinghui; Hahn, Wendy S; Bernlohr, David A (2014) Detecting protein carbonylation in adipose tissue and in cultured adipocytes. Methods Enzymol 538:249-61
Hahn, Wendy S; Kuzmicic, Jovan; Burrill, Joel S et al. (2014) Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Am J Physiol Endocrinol Metab 306:E1033-45
Long, Eric K; Olson, Dalay M; Bernlohr, David A (2013) High-fat diet induces changes in adipose tissue trans-4-oxo-2-nonenal and trans-4-hydroxy-2-nonenal levels in a depot-specific manner. Free Radic Biol Med 63:390-8
Ruskovska, Tatjana; Bernlohr, David A (2013) Oxidative stress and protein carbonylation in adipose tissue - implications for insulin resistance and diabetes mellitus. J Proteomics 92:323-34
Donoghue, Margaret A; Xu, Xin; Bernlohr, David A et al. (2013) Capillary electrophoretic analysis of hydroxyl radicals produced by respiring mitochondria. Anal Bioanal Chem 405:6053-60
Frohnert, Brigitte I; Bernlohr, David A (2013) Protein carbonylation, mitochondrial dysfunction, and insulin resistance. Adv Nutr 4:157-63