Mucin-type O-glycans are primary components of the colonic mucus gel layer. Altered intestinal O- glycosylation has been observed in patients with ulcerative colitis (UC), but whether this alteration is an etiological factor is unknown. O-glycans consist mainly of core 1- and core 3-derived O-glycans. The biosynthesis of these two types of O-glycans is controlled by core 11,3-galactosyltransferase (T-synthase) and Core 31,3-glucosaminyltransferase (C3GnT), respectively. T-synthase function requires a specific chaperone, Cosmc. Human Cosmc is on the X-chromosome, increasing the significance of somatic mutations in this gene. In preliminary studies, we detected somatic mutations in the Cosmc gene in DNA, isolated from colonic epithelial cells, expressing abnormal O-glycans from UC patients. We hypothesize that altered O-glycans impair mucus barrier function, which in turn allows intestinal microflora to interact abnormally with epithelium and mucosal immune cells, thus causing colitis. To test this hypothesis, we developed mice lacking either core 1- or combined core 1- and core 3-derived O-glycans (IEC T-syn-/- and DKO mice, respectively). In addition, we have also developed mice with tamoxifen (TM) inducible deletion of T-syn in intestinal epithelial cells (TM-IEC T-syn-/-). These mice develop spontaneous colitis, which is associated with a massive granulocyte infiltration and cryptic abscesses, closely resembling active human UC. Significantly, IEC T-syn-/- and DKO mice in the Rag1-/- background, who lack adaptive immunity, manifested similarly severe colitis, suggesting an essential role for innate immune cells such as granulocytes in colitis development. This supports an etiological role for O-glycans in colitis and provides a unique model system to test whether altered O-glycans is a potential molecular mechanism in the pathogenesis of human UC. We propose to 1) analyze how abnormal O-glycosylation impairs the expression of intestinal mucins and add additional patient samples to improve the statistical power of our preliminary observations that Cosmc mutations cause abnormal expression of colon epithelial O-glycans in UC patients;2) determine the role of O- glycans in intestinal barrier function, investigate changes in bacterial variety or density in O-glycan-deficient mice before and after disease onset by phylogenetic analysis, and test definitively the role of microbiota in colitis development by developing germ-free O-glycan-deficient mice;and 3) identify mechanisms initiating granulocyte infiltration and determine the role of granulocytes in colitis. Our proposed studies will reveal novel insights into the pathogenesis of colitis and may lead to new therapies.

Public Health Relevance

Ulcerative colitis (UC) is a chronic inflammation of the large intestine with an unknown cause or cure that can last years to decades. UC often leads to physical as well as psychological discomfort and even disability. Altered expression of large sugar molecules called O-glycans in the large intestine is seen in UC patients. However, whether this alteration causes the disease is unknown. The proposed project is poised to provide novel insights into the role of intestinal mucin-type O-glycans in intestinal mucus barrier function and in pathogenesis of the common human disease. This work may lead to a novel therapy for patients with UC.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01DK085691-05
Application #
8661168
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Perrin, Peter J
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Oklahoma Medical Research Foundation
Department
Type
DUNS #
City
Oklahoma City
State
OK
Country
United States
Zip Code
73104
Jacobs, Jonathan P; Braun, Jonathan (2014) Immune and genetic gardening of the intestinal microbiome. FEBS Lett 588:4102-11
Sommer, Felix; Adam, Nina; Johansson, Malin E V et al. (2014) Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One 9:e85254
Tong, Maomeng; McHardy, Ian; Ruegger, Paul et al. (2014) Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J 8:2193-206
Perez-Muñoz, Maria Elisa; Bergstrom, Kirk; Peng, Vincent et al. (2014) Discordance between changes in the gut microbiota and pathogenicity in a mouse model of spontaneous colitis. Gut Microbes 5:286-95
Johansson, Malin E V; Gustafsson, Jenny K; Holmen-Larsson, Jessica et al. (2014) Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63:281-91
Ahmed, Ishfaq; Roy, Badal; Chandrakesan, Parthasarathy et al. (2013) Evidence of functional cross talk between the Notch and NF-ýýB pathways in nonneoplastic hyperproliferating colonic epithelium. Am J Physiol Gastrointest Liver Physiol 304:G356-70
Bergstrom, Kirk S B; Xia, Lijun (2013) Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23:1026-37
Fu, Jianxin; Wei, Bo; Wen, Tao et al. (2011) Loss of intestinal core 1-derived O-glycans causes spontaneous colitis in mice. J Clin Invest 121:1657-66
Lin, Lin; Braun, Jonathan (2011) Another earth: innate lymphoid cells and intestinal inflammation. Gastroenterology 141:1542-4