Overdose with acetaminophen (APAP) is the most common cause of acute liver failure in humans. Metabolic bioactivation of APAP initiates a cascade of events that causes hepatocellular necrosis, and it is during this progression phase when antidotal therapy is most likely to be successful. In human patients, coagulation cascade activation and thrombin generation accompanies the progression of APAP hepatotoxicity. In APAP- treated mice, tissue factor (TF) activates the coagulation cascade, resulting in activation of the thrombin receptor, protease-activated receptor-1 (PAR-1), and in the deposition of fibrin in liver. Preliminary results suggest that coagulation system activation has dichotomous roles in APAP hepatotoxicity. TF-dependent thrombin generation and stimulation of PAR-1 appear to contribute to the early progression of liver damage, since deficiency in TF or PAR-1 reduces early APAP-induced hepatocellular injury. Generation of nitric oxide and of cytokines such as tumor necrosis factor-alpha and interleukin 1-beta are associated with early progression of APAP hepatotoxicity, and PAR-1 activation of nonparenchymal cells in other tissues has been shown to stimulate production of each of these factors. Conversely, thrombin-mediated fibrin deposition limits later hepatocellular injury and hemorrhage. The deposition of fibrin is enhanced by the antifibrinolytic activity of plasminogen activator inhibitor-1 (PAI-1), a plasma protein the expression of which is induced by the transcription factor, hypoxia inducible factor-1alpha (HIF-1a). Based on our preliminary data, we hypothesize that APAP overdose results in TF-dependent production of thrombin, which contributes to the early progression of liver injury by activating PAR-1, but also limits hemorrhage and hepatocellular necrosis progression by generating fibrin. This hypothesis will be tested in mice in a series of experiments in vivo and in vitro employing parenchymal and nonparenchymal liver cells and using genetic approaches including novel mice generated using conditional knockout, Cre-LoxP technology, as well as appropriate pharmacological interventions.
Aim 1 will explore the importance of TF expressed by hepatocytes and hepatocyte-derived procoagulant microparticles in thrombin generation, and the role of decreased glutathione in TF activation during APAP toxicity.
Aim 2 will determine the role of PAR-1 activation on nonparenchymal cells in the expression of factors associated with the pathogenesis APAP-induced liver injury.
The final aim will focus on the injury-limiting influence of fibrin clots and role of HIF-1a-mediated expression of PAI-1 in fibrin deposition in liver. Elucidating mechanisms by which APAP-induced liver injury progresses is essential for defining novel strategies to prevent liver failure in patients and for the general understanding of the pathogenesis of drug-induced liver injury.

Public Health Relevance

Coagulation cascade activation and associated thrombin generation occur in human patients who suffer from acetaminophen overdose, a major cause of acute liver failure in the US. Studies in mice revealed that thrombin has both harmful and beneficial roles in the progression of acetaminophen-induced liver injury. The proposed studies are designed to understand the mechanisms behind these dichotomous roles, and the results could lead to improved therapy and survival for patients with acetaminophen overdose.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Serrano, Jose
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Michigan State University
Schools of Veterinary Medicine
East Lansing
United States
Zip Code
Miyakawa, Kazuhisa; Joshi, Nikita; Sullivan, Bradley P et al. (2015) Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice. Blood 126:1835-43
Miyakawa, Kazuhisa; Albee, Ryan; Letzig, Lynda G et al. (2015) A Cytochrome P450-Independent Mechanism of Acetaminophen-Induced Injury in Cultured Mouse Hepatocytes. J Pharmacol Exp Ther 354:230-7
Maiuri, Ashley R; Breier, Anna B; Gora, Lukas F J et al. (2015) Cytotoxic Synergy Between Cytokines and NSAIDs Associated With Idiosyncratic Hepatotoxicity Is Driven by Mitogen-Activated Protein Kinases. Toxicol Sci 146:265-80
Kopec, Anna K; Luyendyk, James P (2014) Coagulation in liver toxicity and disease: role of hepatocyte tissue factor. Thromb Res 133 Suppl 1:S57-9
Lopez, Michelle; Kopec, Anna K; Joshi, Nikita et al. (2014) Fas-induced apoptosis increases hepatocyte tissue factor procoagulant activity in vitro and in vivo. Toxicol Sci 141:453-64
Kopec, Anna K; Sullivan, Bradley P; Kassel, Karen M et al. (2014) Toxicogenomic analysis reveals profibrogenic effects of trichloroethylene in autoimmune-mediated cholangitis in mice. Toxicol Sci 141:515-23
Sullivan, Bradley P; Kopec, Anna K; Joshi, Nikita et al. (2013) Hepatocyte tissue factor activates the coagulation cascade in mice. Blood 121:1868-74
Sullivan, Bradley P; Kassel, Karen M; Jone, Alice et al. (2012) Fibrin(ogen)-independent role of plasminogen activators in acetaminophen-induced liver injury. Am J Pathol 180:2321-9
Coen, Muireann; Rademacher, Peter M; Zou, Wei et al. (2012) Comparative NMR-based metabonomic investigation of the metabolic phenotype associated with tienilic acid and tienilic acid isomer. Chem Res Toxicol 25:2412-22
Singhal, Rohit; Ganey, Patricia E; Roth, Robert A (2012) Complement activation in acetaminophen-induced liver injury in mice. J Pharmacol Exp Ther 341:377-85