The prevalence of obesity continues to rise, along with its metabolic consequences including diabetes, dyslipidemia, hypertension, fatty liver disease, heart disease, and a host of other morbidities. A clear understanding of the genetic architecture of adiposity and its correlated metabolic traits can identify important targets for intervention, either behavioral or pharmaceutical. Significant progress was achieved in the last 4 years of our project in identifying hundreds of common variants associated with adiposity, regional fat distribution, and ectopic fat across 3 major ethnicities;identifying interactions wit physical activity, smoking, gender, and age;identifying pleiotropic loci accounting for the correlated architecture with metabolic traits;and bioinformatic identification of important pathways, tissue specificities, and predicted cellular / organismal functions. In this renewal application, we propose to continue to expand our understanding of the genetic underpinnings of adiposity traits, specifically, body mass index (BMI), measures of centralized obesity (waist- to-hip ratio adjusted for BMI (WHRaBMI) and CT assessed abdominal fat volumes by focusing on rare variation measured by whole exome and whole genome sequencing, carrying out detailed bioinformatic annotation of our findings including predicted functional significance, regulatory function, and pathways using publicly available knowledge databases, and leveraging our collaboration with ENCODE investigators. Finally, we propose to carry out functional mapping and evaluation of our discoveries in humans in a Drosophila model of adiposity and diet-induced diabetes. We will interrogate GWAS-identified genomic regions, by assessing the effect of knock-downs and knock-outs of functional elements (genes, regulatory loci) in those regions on Drosophila adiposity and metabolic phenotypes. This functional mapping will identify genes in the regions of association that influence adiposity traits, providing gene targets for investigation in the human sequence resource. Our basis of operation is within the CHARGE consortium with its outstanding resources and investigators, and with our established collaboration with other consortia, in particular, GIANT. These powerful approaches for discovery, annotation, and screening for functional significance will allow us to expand our knowledge and understanding of the genetic architecture of obesity with the potential to identify pathways / targets amenable to pharmaceutical or behavioral intervention.

Public Health Relevance

The prevalence of obesity continues to rise, along with its metabolic consequences including diabetes, dyslipidemia, hypertension, fatty liver disease, heart disease, and a host of other morbidities. A clear understanding of the genetic architecture of adiposity and its correlated metabolic traits can identify important targets for intervention, either behavioral or pharmaceutical. In this project, we will extend our genetic search from common variants and haplotypes to less frequent / rare variants assessed by chip array or sequencing. The unique information from family studies will be useful in identifying linked regions harboring rare trait variants, search for segregating major genes for obesity, and modeling parent-of-origin effects. All findings will be deeply annotated using a wide variety of knowledge databases, notably those from ENCODE. Finally, we will use an experimental system - Drosophila melanogaster - to carry out functional mapping in associated genomic regions, and to extend our knowledge of the effect of adiposity genes as a function of sex and developmental stage. We anticipate these combined approaches will allow us to continue to expand our knowledge of the genetic architecture of adiposity traits in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK089256-05
Application #
8774098
Study Section
Kidney, Nutrition, Obesity and Diabetes (KNOD)
Program Officer
Karp, Robert W
Project Start
2010-09-10
Project End
2017-06-30
Budget Start
2014-09-19
Budget End
2015-06-30
Support Year
5
Fiscal Year
2014
Total Cost
$736,723
Indirect Cost
$159,911
Name
Washington University
Department
Genetics
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Marouli, Eirini (see original citation for additional authors) (2017) Rare and low-frequency coding variants alter human adult height. Nature 542:186-190
Fernández-Rhodes, Lindsay; Robinson, Whitney R; Sotres-Alvarez, Daniela et al. (2017) Accuracy of Self-reported Weight in Hispanic/Latino Adults of the Hispanic Community Health Study/Study of Latinos. Epidemiology 28:847-853
Zillikens, M Carola; Demissie, Serkalem; Hsu, Yi-Hsiang et al. (2017) Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nat Commun 8:80
Justice, Anne E (see original citation for additional authors) (2017) Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun 8:14977
Kilpeläinen, Tuomas O; Carli, Jayne F Martin; Skowronski, Alicja A et al. (2016) Genome-wide meta-analysis uncovers novel loci influencing circulating leptin levels. Nat Commun 7:10494
Lu, Yingchang (see original citation for additional authors) (2016) New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat Commun 7:10495
CHARGE Consortium Hematology Working Group (2016) Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet 48:867-76
Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B et al. (2016) Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 351:1166-71
Olfson, E; Saccone, N L; Johnson, E O et al. (2016) Rare, low frequency and common coding variants in CHRNA5 and their contribution to nicotine dependence in European and African Americans. Mol Psychiatry 21:601-7
Pattaro, Cristian (see original citation for additional authors) (2016) Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function. Nat Commun 7:10023

Showing the most recent 10 out of 52 publications