More than 60% of American women enter pregnancy overweight or obese and fetal overgrowth is common in these pregnancies. Fetal overgrowth increases the risk for traumatic birth injuries and predisposes the baby for development of obesity, diabetes and hypertension in childhood and later in life. The mechanisms underlying the increased fetal growth in overweight/obese women are largely unknown. Our overall model is that increased levels of pro-inflammatory cytokines, leptin and free fatty acids (FFA) in overweight/obese women cause an increase in TNF- and IL-6 release from the placenta. We propose that these cytokines stimulate amino acid transporter expression and activity, which in vivo will result in increased nutrient delivery to the fetus and ultimately increased fetal growth. To address this model our central hypothesis is that FFA stimulate placental amino acid transport mediated by multiple signaling pathways including binding to Toll Like Receptor 4 resulting in activation of MAP kinase and NF which promotes production of cytokines such as IL-6. We further propose that cytokines, produced by the trophoblast and circulating in maternal plasma, up-regulate trophoblast amino acid transport by affecting transcription, translation and/or membrane trafficking of specific amino acid transporter isoforms, mediated in part by STAT3. We will address this central hypothesis in three specific aims: 1. Determine the impact of high maternal body mass index (BMI) on key intracellular signaling pathways and placental nutrient transport capacity. We will recruit 75 lean, overweight and obese pregnant women and measure expression and activity of key intracellular signaling pathways and nutrient transporters in placenta and correlate these to maternal BMI and metabolic parameters. 2. Establish the effect of FFA on placental cytokine production and define the intracellular signaling pathway mediating the effects. Using primary human trophoblast cells and siRNA techniques, we will delineate the intracellular signaling pathway linking FFA to increased cytokine release. 3. Determine the effect of pro-inflammatory cytokines on placental amino acid transport and identify the intracellular signaling mechanisms involved. The role of key intracellular signaling molecules, such as STAT 3, will be investigated employing siRNA approaches in cultured human primary trophoblast cells, and we will examine three levels of potential regulation of placental amino acid transport capacity: gene transcription, protein translation and membrane trafficking. Our preliminary data give strong support for our central hypothesis. The proposed studies are innovative because they are expected to identify a mechanistic link between the perturbed maternal metabolism in obesity and alterations in placental function, which increases nutrient delivery to the fetus. The significance of this study is that it will provide novel information on the mechanisms underlying fetal overgrowth, which may allow for the development of new intervention strategies in order to reduce fetal overgrowth and its'short- and long-term health consequences.

Public Health Relevance

Overweight and obese women often deliver large babies, which have a high risk to develop obesity, diabetes and hypertension already in childhood. We propose that changes in placental nutrient transport constitutes an important mechanism by which maternal obesity leads to increased birth weight. This is highly relevant to public health since this new information may lead to novel intervention strategies to alleviate fetal overgrowth, which could lessen the epidemic of obesity and diabetes in the next generation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK089989-04
Application #
8448235
Study Section
Pregnancy and Neonatology Study Section (PN)
Program Officer
Silva, Corinne M
Project Start
2010-04-20
Project End
2014-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
4
Fiscal Year
2013
Total Cost
$308,567
Indirect Cost
$100,778
Name
University of Texas Health Science Center San Antonio
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Díaz, Paula; Powell, Theresa L; Jansson, Thomas (2014) The role of placental nutrient sensing in maternal-fetal resource allocation. Biol Reprod 91:82
Lager, S; Ramirez, V I; Gaccioli, F et al. (2014) Expression and localization of the omega-3 fatty acid receptor GPR120 in human term placenta. Placenta 35:523-5
Lager, Susanne; Jansson, Thomas; Powell, Theresa L (2014) Differential regulation of placental amino acid transport by saturated and unsaturated fatty acids. Am J Physiol Cell Physiol 307:C738-44
Lager, S; Aye, I L M H; Gaccioli, F et al. (2014) Labor inhibits placental mechanistic target of rapamycin complex 1 signaling. Placenta 35:1007-12
Aye, Irving L M H; Lager, Susanne; Ramirez, Vanessa I et al. (2014) Increasing maternal body mass index is associated with systemic inflammation in the mother and the activation of distinct placental inflammatory pathways. Biol Reprod 90:129
Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L (2013) Interleukin-1? inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts. Mol Cell Endocrinol 381:46-55
Jansson, Nina; Rosario, Fredrick J; Gaccioli, Francesca et al. (2013) Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab 98:105-13
Lager, Susanne; Gaccioli, Francesca; Ramirez, Vanessa I et al. (2013) Oleic acid stimulates system A amino acid transport in primary human trophoblast cells mediated by toll-like receptor 4. J Lipid Res 54:725-33
Jansson, Thomas; Powell, Theresa L (2013) Role of placental nutrient sensing in developmental programming. Clin Obstet Gynecol 56:591-601
Lager, S; Jansson, N; Olsson, A L et al. (2011) Effect of IL-6 and TNF-? on fatty acid uptake in cultured human primary trophoblast cells. Placenta 32:121-7