Precise control of inflammation is essential for effective immunity and the maintenance of normal tissue homeostasis. Work performed under the current period of support led to the discovery of two co-repressor dependent mechanisms that enable nuclear receptors to inhibit Toll-like receptor (TLR)-dependent gene expression in a context and gene-specific manner. The first mechanism involves NCoR and SMRT co- repressor complexes. These complexes reside on the promoters of many TLR-responsive genes under basal conditions and are cleared in response to TLR ligation as a prerequisite to gene activation. These complexes can therefore be considered to impose 'checkpoint'functions that prevent spurious gene activation in the absence of a strong activating signal. PPARs and LXRs exert repressive effects on this subset of genes by inhibiting the signal-dependent clearance of NCoR/SMRT complexes. The second repression mechanism involves Co-REST/LSD1 corepressor complexes, which we recently found to function in an anti-inflammatory pathway in microglia, the main innate immune cells of the brain. In this pathway, the orphan nuclear receptor Nurr1 is induced in response to TLR signaling and recruits CoREST/LSD1 co-repressor complexes to p65 at NFkB-responsive promoters. This acts to facilitate p65 turnover and re-establish a basal state of gene expression. Several new questions have emerged from these findings that will be addressed in this proposal.
Specific Aim 1 will be to define the molecular mechanisms that enable NCoR complexes to exert their checkpoint functions at TLR4 target genes.
Specific Aim 2 will be to define mechanisms underlying signal dependent turnover of NCoR from TLR-responsive genes and the molecular basis for inhibition of this step by LXRs and PPAR3.
Specific Aim 3 will be to define roles of the NR4/CoREST/LSD1 transrepression pathway in resolution of pro-inflammatory gene expression and the functional relationship of this pathway to the NCoR/SMRT checkpoint functions. Overall, these studies will provide new insights into molecular mechanisms that are utilized to integrate pro- and anti-inflammatory signaling pathways at the level of individual promoters and are likely to identify new points for intervention in transcriptional programs that contribute to cancer, insulin resistance and chronic inflammatory diseases.

Public Health Relevance

Precise control of inflammation is essential for effective immunity and the maintenance of normal tissue function. Research proposed in this application will define mechanisms that integrate pro- and anti- inflammatory processes and identify new targets for therapeutic intervention in cancer, diabetes and chronic inflammatory diseases. )

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Margolis, Ronald N
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Other Basic Sciences
Schools of Medicine
La Jolla
United States
Zip Code
Glass, Christopher K; Natoli, Gioacchino (2016) Molecular control of activation and priming in macrophages. Nat Immunol 17:26-33
Allison, Karmel A; Sajti, Eniko; Collier, Jana G et al. (2016) Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells. Elife 5:
Eichenfield, Dawn Z; Troutman, Ty Dale; Link, Verena M et al. (2016) Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. Elife 5:
Romanoski, Casey E; Link, Verena M; Heinz, Sven et al. (2015) Exploiting genomics and natural genetic variation to decode macrophage enhancers. Trends Immunol 36:507-18
Glass, Christopher K (2015) Genetic and genomic approaches to understanding macrophage identity and function. Arterioscler Thromb Vasc Biol 35:755-62
Crotti, Andrea; Glass, Christopher K (2015) The choreography of neuroinflammation in Huntington's disease. Trends Immunol 36:364-73
Link, Verena M; Gosselin, David; Glass, Christopher K (2015) Mechanisms Underlying the Selection and Function of Macrophage-Specific Enhancers. Cold Spring Harb Symp Quant Biol 80:213-21
Heinz, Sven; Romanoski, Casey E; Benner, Christopher et al. (2015) The selection and function of cell type-specific enhancers. Nat Rev Mol Cell Biol 16:144-54
Shaked, Iftach; Hanna, Richard N; Shaked, Helena et al. (2015) Transcription factor Nr4a1 couples sympathetic and inflammatory cues in CNS-recruited macrophages to limit neuroinflammation. Nat Immunol 16:1228-34
Crotti, Andrea; Benner, Christopher; Kerman, Bilal E et al. (2014) Mutant Huntingtin promotes autonomous microglia activation via myeloid lineage-determining factors. Nat Neurosci 17:513-21

Showing the most recent 10 out of 29 publications