Caspase-1, a cysteine protease, is critical for the processing and secretion of IL-1( and IL-18, two pro- inflammatory cytokines that play an important role in host defense, sepsis, and the pathogenesis of several inflammatory diseases. The activation of caspase-1 is controlled by members of the intracellular NOD-like receptor (NLR) family including NLRC4 and NLRP3. Recent work from several laboratories indicate that NLRC4 and NLRP3 regulate caspase-1 activation through the assembly of a molecular platform termed """"""""the inflammasome"""""""" that includes the adaptor ASC and caspase-1. We have obtained evidence that NLRC4 senses bacterial flagellin that is introduced into the host cytosol via membrane pores formed by bacterial type III or IV secretion systems. In contrast, NLRP3 responds to bacterial pore-forming toxins, ATP and particulate matter in macrophages stimulated with microbial molecules or endogenous cytokines. Our knowledge about the inflammasome is limited and primarily derived from cellular and animals models of systemic inflammation. We have obtained Preliminary Results supporting an important role for the inflammasome in intestinal inflammation driven by enteric infection. The goal of this proposal is to provide a better understanding of the mechanisms that govern the activation of the inflammasome in intestinal phagocytes and the role of NLRC4 and NLRP3 in the response to clinically relevant intestinal bacteria. Biochemical, genetic, and cellular approaches will be employed to study the function and activation of the inflammasome in intestinal immunity using Salmonella and Crohn's disease-associated invasive-adherent E. coli. Given the important role of IL-1( in immunity and inflammatory disease, understanding of the mechanism involved in caspase-1 activation and IL-1( production in the intestine is expected to have a significant impact in the medical field

Public Health Relevance

The inflammasomes play a critical in host defense and contributes to inflammatory responses through the regulation of caspase-1 activation and IL-1(/IL-18 secretion. We find that the NLRC4 and NLRP3 inflammasomes are important for the detection of intestinal bacteria pathogens and host defense in the intestine. The main goal of this proposal is to understand the regulation, activation and function of the inflammasomes in response to clinically relevant Salmonella and adherent-invasive E. coli, two enteric bacterial pathogens. These studies may lead to better understanding of mechanisms that control host defense against human pathogens and the pathogenesis of inflammatory disease in the intestine.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Grey, Michael J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Schools of Medicine
Ann Arbor
United States
Zip Code
Kim, Donghyun; Zeng, Melody Y; Núñez, Gabriel (2017) The interplay between host immune cells and gut microbiota in chronic inflammatory diseases. Exp Mol Med 49:e339
Sakamoto, Kei; Kim, Yun-Gi; Hara, Hideki et al. (2017) IL-22 Controls Iron-Dependent Nutritional Immunity Against Systemic Bacterial Infections. Sci Immunol 2:
Kim, Donghyun; Seo, Sang-Uk; Zeng, Melody Y et al. (2017) Mesenchymal Cell-Specific MyD88 Signaling Promotes Systemic Dissemination of Salmonella Typhimurium via Inflammatory Monocytes. J Immunol 199:1362-1371
Conos, Stephanie A; Chen, Kaiwen W; De Nardo, Dominic et al. (2017) Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci U S A 114:E961-E969
Pickard, Joseph M; Zeng, Melody Y; Caruso, Roberta et al. (2017) Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 279:70-89
Kim, Yun-Gi; Sakamoto, Kei; Seo, Sang-Uk et al. (2017) Neonatal acquisition of Clostridia species protects against colonization by bacterial pathogens. Science 356:315-319
Zeng, Melody Y; Cisalpino, Daniel; Varadarajan, Saranyaraajan et al. (2016) Gut Microbiota-Induced Immunoglobulin G Controls Systemic Infection by Symbiotic Bacteria and Pathogens. Immunity 44:647-658
He, Yuan; Zeng, Melody Y; Yang, Dahai et al. (2016) NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530:354-7
He, Yuan; Hara, Hideki; Núñez, Gabriel (2016) Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 41:1012-1021
Symington, J W; Wang, C; Twentyman, J et al. (2015) ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1?-dependent manner. Mucosal Immunol 8:1388-99

Showing the most recent 10 out of 42 publications