Emerging physiologic and genetic data suggest that dysfunction of the pancreatic beta cell is the key determinant of whether an insulin resistant individual will progress to frank hyperglycemia and diabetes. The long-range goal of this applicant is to define the pathways that govern beta cell function and survival in states of health in order to understand how these regulatory circuits are impaired in the pathologic state of Type 2 diabetes mellitus. The sarco-endoplasmic reticulum calcium ATPase or SERCA pump resides in the endoplasmic reticulum membrane and is responsible for maintaining a steep calcium concentration gradient between the cytosol and endoplasmic reticulum. In the beta cell, this gradient plays a key role in regulated insulin secretion and the maintenance of endoplasmic reticulum health and function. Preliminary and published work has revealed that expression of the predominant beta cell isoform, SERCA2, is markedly downregulated in rodent and human models of Type 2 diabetes mellitus. Furthermore, loss of SERCA2 expression leads to profound changes in beta cell secretory function and intracellular calcium flux in response to glucose. Given this background, the overall hypothesis of this proposal is that dysregulation of SERCA2 activity and expression is a key contributor to the beta cell dysfunction and death observed in Type 2 diabetes mellitus. To test this hypothesis, three aims are proposed.
Aim 1 : elucidate the in vivo role of SERCA2 in beta cell function using two novel mouse models of SERCA2 deficiency.
Aim 2 : delineate the transcriptional pathways that regulate SERCA2 expression in the pancreatic beta cell under normal conditions and in diabetes.
Aim 3 : elucidate the contribution of microRNAs in disruption of the SERCA2 gene regulatory network. The successful completion of these aims will precisely define the role of islet beta cell SERCA2 in metabolic and glucose homeostasis and identify the pathways that lead to its transcriptional dysregulation in Type 2 diabetes mellitus.

Public Health Relevance

Type 2 diabetes mellitus affects nearly 1 in 12 Americans and is a leading cause of blindness, kidney failure, amputations, and heart disease. Dysfunction of the insulin producing beta cells in the pancreas plays a prominent role in the development of diabetes. The goal of this project is to define the molecular pathways that lead to beta cell failure in Type 2 diabetes in order to inform the development of novel and improved therapeutic strategies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK093954-04
Application #
8724486
Study Section
Cellular Aspects of Diabetes and Obesity Study Section (CADO)
Program Officer
Sato, Sheryl M
Project Start
2011-09-15
Project End
2016-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Kono, Tatsuyoshi; Tong, Xin; Taleb, Solaema et al. (2018) Impaired Store-Operated Calcium Entry and STIM1 Loss Lead to Reduced Insulin Secretion and Increased Endoplasmic Reticulum Stress in the Diabetic ?-Cell. Diabetes 67:2293-2304
DiMeglio, Linda A; Evans-Molina, Carmella; Oram, Richard A (2018) Type 1 diabetes. Lancet 391:2449-2462
Beli, Eleni; Yan, Yuanqing; Moldovan, Leni et al. (2018) Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice. Diabetes 67:1867-1879
Sims, Emily K; Evans-Molina, Carmella; Tersey, Sarah A et al. (2018) Biomarkers of islet beta cell stress and death in type 1 diabetes. Diabetologia 61:2259-2265
Sims, Emily K; Lakhter, Alexander J; Anderson-Baucum, Emily et al. (2017) MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells. Diabetologia 60:1057-1065
Gordon, Hannah M; Majithia, Neil; MacDonald, Patrick E et al. (2017) STEAP4 expression in human islets is associated with differences in body mass index, sex, HbA1c, and inflammation. Endocrine 56:528-537
Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette et al. (2017) Inflammatory stress of pancreatic beta cells drives release of extracellular heat-shock protein 90?. Immunology 151:198-210
Hatanaka, Masayuki; Anderson-Baucum, Emily; Lakhter, Alexander et al. (2017) Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation. Sci Rep 7:3758
Maddatu, Judith; Anderson-Baucum, Emily; Evans-Molina, Carmella (2017) Smoking and the risk of type 2 diabetes. Transl Res 184:101-107
Bone, Robert N; Evans-Molina, Carmella (2017) Combination Immunotherapy for Type 1 Diabetes. Curr Diab Rep 17:50

Showing the most recent 10 out of 48 publications