While type 1 diabetes (T1D) is ultimately mediated by autoreactive T-cells, in NOD mice, and also likely in humans, B-lymphocytes play an additional key pathogenic role. Through an ability to take up pancreatic ss cell proteins by immunoglobulin (Ig) mediated capture, B-lymphocytes appear to serve as an antigen presenting cell (APC) subset that most efficiently supports expansion of diabetogenic CD4 T-cells. Results from a recent clinical trial indicated transient depletion of B-lymphocytes with the CD20 specific rituximab antibody did not provide for long-term attenuation of diabetogenic autoimmunity. We recently found treatment with a rituximab- like CD20 specific antibody fails to efficiently prevent T1D development when initiated in NOD mice already manifesting signs of established high levels of pathogenic autoimmunity similar to that currently used to identify humans at high future disease risk. This appears to result from B-lymphocytes entering the pancreatic islets of NOD mice becoming CD20 negative. Furthermore, rituximab fails to deplete the marginal zone (MZ) subset of mature B-lymphocytes that can exert potent APC activity. We have also found diabetogenic clonotypes are enriched in the peritoneal CD20 negative B1 B-lymphocyte compartment of NOD mice. These issues call into question the extent that rituximab could be used as a mono-therapeutic T1D intervention approach. Thus, the overall goal of this proposal is to identify strategies that might independently, or in conjunction with rituximab, provide an improved B-lymphocyte directed T1D intervention approach.
Aim 1 will address to what extent do diabetogenic B-lymphocytes reside in compartments refractive to anti-CD20 mediated deletion. A broader array of B-lymphocyte populations, including those in NOD islets, can potentially be deleted through use of agents inhibiting the BAFF/APRIL survival factors rather than anti-CD20. It has also been reported that in NOD mice the ability of B-lymphocytes to mediate expansion of diabetogenic T cells outpaces the capacity of other APC subtypes to support disease protective regulatory T-cell (Treg) responses. The FDA approved reagent GCSF (Neulasta) can enhance recruitment of myeloid dendritic cells with a capacity to support Treg activity. Hence, Aim 2 will evaluate whether BAFF/APRIL inhibition, rather than anti-CD20, provides a better means for B-lymphocyte directed late-stage T1D prevention in NOD mice, or if co-treatment with GCSF synergistically enhances the efficacy of either approach. Other preliminary studies indicate a currently unknown gene(s) within a T1D susceptibility locus designated Idd9/11 on Chromosome 4 contributes to disease pathogenesis in NOD mice by impairing an immunoregulatory pathway normally inhibiting autoreactive B-lymphocyte responses. We have evidence this pathway may be disrupted at other operational points by some human T1D susceptibility genes.
Aim 3 is to determine if identification of a contributory Idd9/11 region gene(s) in NOD mice may reveal an immunoregulatory pathway, also potentially regulating diabetogenic B- lymphocyte development in humans, that may be amenable to pharmacological targeting.

Public Health Relevance

Type 1 diabetes (T1D) is a life threatening disease that results when T lymphocytes mount an aberrant autoimmune response that destroys insulin-producing cells within the pancreas. However, it is now clear that B lymphocytes play an important role in supporting the activation of T1D-inducing T lymphocyte responses. Initial results indicate a B lymphocyte targeting strategy currently in clinical trials may be only partialy effective as a possible T1D intervention approach. Thus, the goal of the present proposal is to identify strategies that may make B lymphocyte targeting approaches a more effective means of T1D intervention than now possible.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK095735-02
Application #
8641351
Study Section
Hypersensitivity, Autoimmune, and Immune-mediated Diseases Study Section (HAI)
Program Officer
Spain, Lisa M
Project Start
2013-04-01
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
2
Fiscal Year
2014
Total Cost
$383,980
Indirect Cost
$164,563
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Scheuplein, Felix; Lamont, Deanna J; Poynter, Matthew E et al. (2015) Mouse Invariant Monoclonal Antibody NKT14: A Novel Tool to Manipulate iNKT Cell Function In Vivo. PLoS One 10:e0140729
Simecek, Petr; Churchill, Gary A; Yang, Hyuna et al. (2015) Genetic Analysis of Substrain Divergence in Non-Obese Diabetic (NOD) Mice. G3 (Bethesda) 5:771-5
Tsaih, S-W; Presa, M; Khaja, S et al. (2015) A locus on mouse chromosome 13 inversely regulates CD1d expression and the development of invariant natural killer T-cells. Genes Immun 16:221-30
Presa, Maximiliano; Chen, Yi-Guang; Grier, Alexandra E et al. (2015) The Presence and Preferential Activation of Regulatory T Cells Diminish Adoptive Transfer of Autoimmune Diabetes by Polyclonal Nonobese Diabetic (NOD) T Cell Effectors into NSG versus NOD-scid Mice. J Immunol 195:3011-9
Lamont, Deanna; Mukherjee, Gayatri; Kumar, P Rajesh et al. (2014) Compensatory mechanisms allow undersized anchor-deficient class I MHC ligands to mediate pathogenic autoreactive T cell responses. J Immunol 193:2135-46
Garabatos, Nahir; Alvarez, Raimon; Carrillo, Jorge et al. (2014) In vivo detection of peripherin-specific autoreactive B cells during type 1 diabetes pathogenesis. J Immunol 192:3080-90
Presa, Maximiliano; Ortiz, Angela Zarama; Garabatos, Nahir et al. (2013) Cholera toxin subunit B peptide fusion proteins reveal impaired oral tolerance induction in diabetes-prone but not in diabetes-resistant mice. Eur J Immunol 43:2969-79
Mukherjee, Gayatri; Geliebter, Ari; Babad, Jeffrey et al. (2013) DEC-205-mediated antigen targeting to steady-state dendritic cells induces deletion of diabetogenic CD8⁺ T cells independently of PD-1 and PD-L1. Int Immunol 25:651-60
Lee, Jun Sik; Scandiuzzi, Lisa; Ray, Anjana et al. (2012) B7x in the periphery abrogates pancreas-specific damage mediated by self-reactive CD8 T cells. J Immunol 189:4165-74
Unger, Wendy W J; Pearson, Todd; Abreu, Joana R F et al. (2012) Islet-specific CTL cloned from a type 1 diabetes patient cause beta-cell destruction after engraftment into HLA-A2 transgenic NOD/scid/IL2RG null mice. PLoS One 7:e49213

Showing the most recent 10 out of 11 publications