Diabetes is a growing epidemic that currently affects over 25 million people in the US. The majority of these cases (90-95%) are type 2 diabetes, characterized by a diminished ability to respond to insulin. More alarming is that an estimated 54 million Americans have pre-diabetes, a condition that puts them at high risk for developing type 2 diabetes. New ways to manage this disease in an insulin independent manner are urgently needed. Recently, an unusual phospholipid, dilauroylphosphatidylcholine (PC 12:0-12:0;DLPC), has shown promising antidiabetic properties - lowering serum lipid levels, reducing fat accumulation in the liver, and improving glucose tolerance in diabetic mice when administered orally. Conditional knockout studies revealed that these effects were completely dependent on the orphan nuclear receptor liver receptor homologue-1 (LRH-1), thus identifying a new LRH-1 - DLPC signaling axis involved in bile acid metabolism and glucose homeostasis. We show that DLPC binds directly to LRH-1 and that DLPC binding completely blocks corepressor binding in vitro. To target this pathway for the treatment of diabetes it is critical t determine the fundamental mechanism governing the specific activation of LRH-1 by DLPC. We have determined the structure of the LRH-1 - DLPC complex to 1.9 ?, which shows that DLPC binds very differently than the current best LRH-1 synthetic agonists. We will capitalize on this structure along with several recent innovations in our lab to identify the mechanisms driving this unique activity to enhance the potency of potential therapeutics targeting LRH-1 for the treatment of metabolic diseases.
The Specific Aims of this proposal are as follows: 1. To determine LRH-1's phospholipid specificity in vitro, 2. To define the interaction surface between DLPC and LRH-1 and to connect these interactions with receptor function, 3. To determine the structure and dynamics of the apoLRH-1 - corepressor complex

Public Health Relevance

The diabetes epidemic, which currently impacts over 25 million people in the US, is rapidly growing. The majority of these cases (90-95%) are type 2 diabetics, characterized by a diminished ability to respond to insulin. Thus, new insulin-independent ways to manage this disease are urgently needed. Recently, an unusual phospholipid has shown promising antidiabetic properties acting through a protein termed LRH-1. We will target this LRH-1 - phospholipid signaling pathway to develop potential therapeutics for this widely prevalent disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK095750-03
Application #
8665419
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Margolis, Ronald N
Project Start
2012-05-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Emory University
Department
Biochemistry
Type
Schools of Medicine
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Weikum, Emily R; de Vera, Ian Mitchelle S; Nwachukwu, Jerome C et al. (2017) Tethering not required: the glucocorticoid receptor binds directly to activator protein-1 recognition motifs to repress inflammatory genes. Nucleic Acids Res 45:8596-8608
Weikum, Emily R; Okafor, C Denise; D'Agostino, Emma H et al. (2017) Structural Analysis of the Glucocorticoid Receptor Ligand-Binding Domain in Complex with Triamcinolone Acetonide and a Fragment of the Atypical Coregulator, Small Heterodimer Partner. Mol Pharmacol 92:12-21
Francis, Joshua W; Goswami, Devrishi; Novick, Scott J et al. (2017) Nucleotide Binding to ARL2 in the TBCD?ARL2??-Tubulin Complex Drives Conformational Changes in ?-Tubulin. J Mol Biol 429:3696-3716
Mays, Suzanne G; Okafor, C Denise; Tuntland, Micheal L et al. (2017) Structure and Dynamics of the Liver Receptor Homolog 1-PGC1? Complex. Mol Pharmacol 92:1-11
Weikum, Emily R; Knuesel, Matthew T; Ortlund, Eric A et al. (2017) Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol 18:159-174
Mays, Suzanne G; Okafor, C Denise; Whitby, Richard J et al. (2016) Crystal Structures of the Nuclear Receptor, Liver Receptor Homolog 1, Bound to Synthetic Agonists. J Biol Chem 291:25281-25291
Weikum, Emily R; Tuntland, Micheal L; Murphy, Michael N et al. (2016) A Structural Investigation into Oct4 Regulation by Orphan Nuclear Receptors, Germ Cell Nuclear Factor (GCNF), and Liver Receptor Homolog-1 (LRH-1). J Mol Biol 428:4981-4992
Hudson, William H; Kossmann, Bradley R; de Vera, Ian Mitchelle S et al. (2016) Distal substitutions drive divergent DNA specificity among paralogous transcription factors through subdivision of conformational space. Proc Natl Acad Sci U S A 113:326-31
Musille, Paul M; Kossmann, Bradley R; Kohn, Jeffrey A et al. (2016) Unexpected Allosteric Network Contributes to LRH-1 Co-regulator Selectivity. J Biol Chem 291:1411-26
Brown, Nicole E; Goswami, Devrishi; Branch, Mary Rose et al. (2015) Integration of G protein ? (G?) signaling by the regulator of G protein signaling 14 (RGS14). J Biol Chem 290:9037-49

Showing the most recent 10 out of 19 publications