Autoimmunity affects nearly ten million Americans and, for unknown reasons, is increasing in frequency. Available evidence indicates that autoimmune diseases arise due to a combination of genetically determined susceptibility and innate immune stimulation, which conspire to stimulate adaptive immunity to self. Underpinning autoimmunity is the breakdown of immune tolerance to self in T cell and/or B cell compartments. While a great deal is known about the mechanisms that maintain B cell tolerance, we understand little about the mechanisms that cause it to fail in autoimmunity. In this application we propose to study mechanisms operative in loss of B cell tolerance to insulin in murine and human Type 1 Diabetes, a disease known to require B cells that are thought to function by antigen presentation to CD4 T cells. Our approach will build upon our previous work defining signaling pathways operative in maintaining antigen unresponsiveness of anergic B cells. We will analyze by flow cytometry changes in the status of insulin-specific B cells isolated using a novel magnetic bead-based approach from normal, prediabetic and diabetic mice and patients. In some cases immunoglobulin heavy chain transgenesis will be used to generate a diverse antigen receptor repertoire that is nonetheless enriched in insulin-specific cells.
Aim 1 will explore how peripheral insulin-specific B cells are silenced in normal mice and whether this silencing is breached in diabetic mice.
In Aim 2 we will study the role of antigen receptor affinit for insulin in determining mode of silencing, fate and diabetogenic potential. This will involve a retrotransgenic approach to generate a repertoire with defined antigen receptor affinity for insulin.
In Aim 3 we will extend studies to the human, comparing insulin-specific B cells in prediabetic and diabetic individuals to non-diabetic first- degree relatives. Finally, in Aim 4 we will assess the therapeutic efficacy in T1D of a novel B cell desensitizing therapy, comparing this therapy to anti-CD20, which depletes B cells. The experiments will address the overarching hypothesis that in Type 1 Diabetes the silence of high affinity insulin-specific B cells is broken and these cells promote disease by presentation of autoantigen to CD4 T cells.

Public Health Relevance

Type 1 Diabetes (T1D) is an autoimmune disease in which insulin-producing cells in the pancreas are attacked by the immune system. While T lymphocytes are responsible for actual organ damage, insulin-specific B cells are required for development of the disease. This application proposes analysis of the role of these B cells in TID, and will test the therapeutic effectiveness of a novel B cell-targeted therapy in this disease

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Spain, Lisa M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Seay, Howard R; Yusko, Erik; Rothweiler, Stephanie J et al. (2016) Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1:e88242
Packard, Thomas A; Smith, Mia J; Conrad, Francis J et al. (2016) B Cell Receptor Affinity for Insulin Dictates Autoantigen Acquisition and B Cell Functionality in Autoimmune Diabetes. J Clin Med 5:
Getahun, Andrew; Beavers, Nicole A; Larson, Sandy R et al. (2016) Continuous inhibitory signaling by both SHP-1 and SHIP-1 pathways is required to maintain unresponsiveness of anergic B cells. J Exp Med 213:751-69
Franks, S Elizabeth; Getahun, Andrew; Hogarth, P Mark et al. (2016) Targeting B cells in treatment of autoimmunity. Curr Opin Immunol 43:39-45
Smith, Mia J; Packard, Thomas A; O'Neill, Shannon K et al. (2015) Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 64:1703-12
Getahun, Andrew; Cambier, John C (2015) Of ITIMs, ITAMs, and ITAMis: revisiting immunoglobulin Fc receptor signaling. Immunol Rev 268:66-73
Hinman, Rochelle M; Cambier, John C (2014) Role of B lymphocytes in the pathogenesis of type 1 diabetes. Curr Diab Rep 14:543
Hinman, Rochelle M; Smith, Mia J; Cambier, John C (2014) B cells and type 1 diabetes mice and men. Immunol Lett 160:128-32
Bounab, Yacine; Getahun, Andrew; Cambier, John C et al. (2013) Phosphatase regulation of immunoreceptor signaling in T cells, B cells and mast cells. Curr Opin Immunol 25:313-20