Gut microbiota has recently emerged as a novel, metabolically active 'organ', tightly linked to obesity and related metabolic disorders such as diabetes and cardiovascular disease;and compelling evidence indicates that several key metabolites (TMAO, L-carnitine, bile acids subtypes) related to gut microbiota metabolism may play pivotal roles in mediating the metabolic effects. Diet is a major force that shapes gut microbiota and weight loss may alter metabolism of gut microbiota. The goal of this application is to examine the long-term (2 years) effects of weight-loss diets varying in macronutrients (fat, protein, and carbohydrate) on the novel cardiometabolic metabolites involved in gut microbiota metabolism in 811 overweight or obese patients from thus far one of the largest and most comprehensive comparator trials on the popular weight-loss diets - the POUNDS LOST trial. We will also assess the relation of changes in plasma gut microbiota metabolites with changes in markers of energy intake and expenditure, including gut hormones (GLP-1, ghrelin), resting metabolic rate (RMR), and total energy expenditure (TEE) measured by doubly-labeled water (DLW);as well as with changes in metabolic risk factors including insulin sensitivity, lipids, adipokines, inflammation, and amino acids. In addition, we will examine the associations between gut microbiota metabolites and global adipose gene expression. Because measurement of energy balance and metabolic markers, and adipose gene expression are funded through separate grants, the proposed project will be conducted in an extremely cost-efficient manner. We have assembled a solid group of experienced collaborators with expertise in epidemiology, metabolomics, gene expression, statistics, clinical trial, and nutrition. We believe that findings of this project will provide novel insights into the metabolic effects of gut microbiota and their relations with dietary factors;and considerably contribute to advance toward new prevention and treatment strategies for obesity and related metabolic disorders through diet intervention.

Public Health Relevance

In one of the largest and most comprehensive comparator trials on the popular weight-loss diets - the POUNDS LOST trial, the proposed study integrates the newly-developed, targeted metabolomic methods and global gene expression profiling to comprehensively evaluate the effects of weight-loss diets varying in macronutrients on the long-term changes in plasma levels of the novel cardiometabolic factors involved in gut microbiota metabolism;and to investigate the mechanisms at molecular and global gene expression levels. Our findings will provide highly important and novel insights into the metabolic effects of gut microbiota and their relations with dietary factors;and significantly contribute to advance toward new prevention and treatment strategies for obesity and related metabolic disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK100383-01A1
Application #
8761982
Study Section
Kidney, Nutrition, Obesity and Diabetes Study Section (KNOD)
Program Officer
Maruvada, Padma
Project Start
2014-09-15
Project End
2017-07-31
Budget Start
2014-09-15
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Harvard University
Department
Nutrition
Type
Schools of Public Health
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02115
Wang, Tiange; Huang, Tao; Kang, Jae H et al. (2017) Habitual coffee consumption and genetic predisposition to obesity: gene-diet interaction analyses in three US prospective studies. BMC Med 15:97
Ma, Wenjie; Huang, Tao; Heianza, Yoriko et al. (2017) Genetic Variations of Circulating Adiponectin Levels Modulate Changes in Appetite in Response to Weight-Loss Diets. J Clin Endocrinol Metab 102:316-325
Liu, G; Liang, L; Bray, G A et al. (2017) Thyroid hormones and changes in body weight and metabolic parameters in response to weight loss diets: the POUNDS LOST trial. Int J Obes (Lond) 41:878-886
Sun, Dianjianyi; Wang, Tiange; Heianza, Yoriko et al. (2017) A History of Asthma From Childhood and Left Ventricular Mass in Asymptomatic Young Adults: The Bogalusa Heart Study. JACC Heart Fail 5:497-504
He, Hao; Sun, Dianjianyi; Zeng, Yong et al. (2017) A Systems Genetics Approach Identified GPD1L and its Molecular Mechanism for Obesity in Human Adipose Tissue. Sci Rep 7:1799
Justice, Anne E (see original citation for additional authors) (2017) Genome-wide meta-analysis of 241,258 adults accounting for smoking behaviour identifies novel loci for obesity traits. Nat Commun 8:14977
Wang, Tiange; Huang, Tao; Heianza, Yoriko et al. (2017) Genetic Susceptibility, Change in Physical Activity, and Long-term Weight Gain. Diabetes 66:2704-2712
Huang, Tao; Zheng, Yan; Hruby, Adela et al. (2017) Dietary Protein Modifies the Effect of the MC4R Genotype on 2-Year Changes in Appetite and Food Craving: The POUNDS Lost Trial. J Nutr 147:439-444
Heianza, Yoriko; Sun, Dianjianyi; Wang, Tiange et al. (2017) Starch Digestion-Related Amylase Genetic Variant Affects 2-Year Changes in Adiposity in Response to Weight-Loss Diets: The POUNDS Lost Trial. Diabetes 66:2416-2423
Lv, Jun; Yu, Canqing; Guo, Yu et al. (2017) Gallstone Disease and the Risk of Type 2 Diabetes. Sci Rep 7:15853

Showing the most recent 10 out of 37 publications