Overactive bladder (OAB) is defined by the International Continence Society as a syndrome characterized by urgency with or without urge incontinence, usually with frequency and nocturia. The pathology and etiology of OAB currently remain unknown. OAB has devastating psychological and social impacts on quality of life, but treatments for OAB are clinically challenging. Sacral neuromodulation is a FDA approved treatment for OAB. Currently it is only offered to OAB patients after pharmacotherapy has failed. In addition, clinical studies have showed that pudendal neuromodulation is superior to sacral neuromodulation. It successfully treated OAB patients who have failed sacral neuromodulation. Furthermore, recent multicenter clinical trials have indicated that tibial neuromodulation is also effective for OAB treatment. Although neuromodulation is an effective treatment for OAB, the mechanisms underlying neuromodulation (sacral, pudendal, or tibial) are still unknown leaving neuromodulation as a mysterious therapy. More surprisingly there is very limited effort in basic science research aimed at revealing the possible mechanisms underlying neuromdulation. In this project we propose to elucidate the mechanisms underlying neuromodulation of bladder overactivity by answering the following question: what neurotransmitter receptors are involved in the different types of neuromodulation (sacral, pudendal, or tibial)? It would be na?ve to believe that the different neuromodulation therapies utilize the same neurotransmitter mechanisms to achieve the therapeutic effects on OAB conditions. Identifying the neurotransmitters/receptors involved in different neuromodulation therapies will remove the mysteries around bladder neuromodulation and provide basic science evidences. It will also provide new pharmacological interventions to further improve the efficacy of neuromodulation therapy. Information about the neurotransmitter mechanisms underlying neuromodulation could also be useful in developing new drugs to treat OAB. Our studies will significantly benefit millions of Americans suffering from OAB.

Public Health Relevance

Overactive bladder (OAB) has devastating psychological and social impacts on quality of life, but treatments for OAB are clinically challenging. Neuromodulation is an effective OAB treatment but its mechanism of action is currently unknown. Our project will identify neurotransmitter receptors involved in neuromodulation, which can be used to improve the clinical outcomes of this therapy, provide new targets for drug development, and significantly benefit millions of Americans suffering from OAB.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (UGPP)
Program Officer
Bavendam, Tamara G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Rogers, Marc J; Shen, Bing; Reese, Jeremy N et al. (2016) Role of glycine in nociceptive and non-nociceptive bladder reflexes and pudendal afferent inhibition of these reflexes in cats. Neurourol Urodyn 35:798-804
Fribance, Sarah; Wang, Jicheng; Roppolo, James R et al. (2016) Axonal model for temperature stimulation. J Comput Neurosci 41:185-92
Zhang, Zhaocun; Lyon, Timothy D; Kadow, Brian T et al. (2016) Conduction block of mammalian myelinated nerve by local cooling to 15-30°C after a brief heating. J Neurophysiol 115:1436-45
Lyon, Timothy D; Ferroni, Matthew C; Kadow, Brian T et al. (2016) Pudendal but not tibial nerve stimulation inhibits bladder contractions induced by stimulation of pontine micturition center in cats. Am J Physiol Regul Integr Comp Physiol 310:R366-74
Jiang, Xuewen; Fuller, Thomas W; Bandari, Jathin et al. (2016) Contribution of GABAA, Glycine, and Opioid Receptors to Sacral Neuromodulation of Bladder Overactivity in Cats. J Pharmacol Exp Ther 359:436-441
Kadow, Brian T; Lyon, Timothy D; Zhang, Zhaocun et al. (2016) Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity. Am J Physiol Renal Physiol 311:F78-84
Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying et al. (2015) Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats. Am J Physiol Renal Physiol 308:F832-8
Ferroni, Matthew C; Slater, Rick C; Shen, Bing et al. (2015) Role of the brain stem in tibial inhibition of the micturition reflex in cats. Am J Physiol Renal Physiol 309:F242-50
Rogers, Marc J; Xiao, Zhiying; Shen, Bing et al. (2015) Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats. Am J Physiol Regul Integr Comp Physiol 308:R42-9
Zhang, Zhaocun; Slater, Richard C; Ferroni, Matthew C et al. (2015) Role of µ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats. J Pharmacol Exp Ther 355:228-34

Showing the most recent 10 out of 11 publications