The gastrointestinal epithelium comprises the primary cellular barrier against omnipresent luminal antigens, and actively participates as an innate immune sensor of microbial pathogens and commensal organisms. As such, intestinal epithelia define the central interface for host-microbiota interactions and intestinal homeostasis. Based on their juxtaposition to the anoxic gut lumen, intestinal epithelial cells function physiologicall in a low- oxygen-tension microenvironment, and exhibit a uniquely adaptive oxygenation profile. In active inflammation associated with inflammatory bowel disease (IBD), mucosal metabolism is profoundly altered, resulting in nutrient and oxygen depletion or hypoxia. Adaptive transcriptional programs elicited by oxygen deprivation in mammalian cells are mediated primarily through the hypoxia-inducible factor (HIF) complex. A protective role for HIF in orchestrating epithelial gene regulation has been identified, with transcriptional responses integrated to specifically support barrier function and adaptations to the hypoxic microenvironment. Genome-wide profiling of HIF target loci highlighted two novel hypoxia-regulated pathways implicated in the host-microbial metabolic axis: the creatine kinase shuttle that promotes spatiotemporal ATP buffering and barrier energetics, and selective autophagy. Autophagy, a highly conserved catabolic pathway, coordinates diverse aspects of cellular and organismal responses to metabolic stressors and infection and has recently been ascribed a key role in the elimination of invasive bacteria (xenophagy). Importantly, epithelial autophagic pathways are dysregulated in IBD. While significant efforts have focused on identification of core autophagy components, regulation of epithelial autophagy at the transcriptional level is poorly characterized. In particular, little is known regarding the coordination of canonical autophagy gene responses and how these modulate xenophagic capture of intracellular pathogens. A fundamental link between selective autophagy of damaged mitochondria (mitophagy) and infectious disease has recently been established, and mitochondrial energetics have been shown to significantly influence the clinical course of murine colitis. Our ongoing studies have identified a cohort of both mitophagic (BNIP3L) and xenophagic (NOD2) genes that are induced by hypoxia and HIF- stabilization in epithelia. Preliminary work has revealed that invasive bacteria are effectively targeted by xenophagy under hypoxic conditions in a HIF-dependent manner. Epithelial HIF-deficient mice demonstrate increased bacterial dissemination and disease activity following acute bacterial challenge. Moreover, augmentation of HIF-mediated creatine metabolism and epithelial bioenergetics proved protective in mouse models of intestinal inflammation. Based on these observations, we hypothesize that epithelial HIF pathways converge in a cell autonomous manner to coordinate mitochondrial and metabolic homeostasis with invasive microbe detection.

Public Health Relevance

Altered epithelial expression of several Crohn's disease-associated autophagy factors has been shown to dramatically influence autophagic targeting of invasive bacteria. Integrated metabolic and transcriptional regulation of cellular autophagy by inflammatory hypoxia and/or bacterial pathogens themselves may define a conserved innate response for host protection in inflammatory bowel disease. Studies outlined in this proposal aim to elucidate these mechanisms, to provide fundamental mechanistic and translational insight into epithelial bacterial handling, and as such, to define novel targets for development of therapeutic strategies.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Gastrointestinal Mucosal Pathobiology Study Section (GMPB)
Program Officer
Perrin, Peter J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Onyiah, Joseph C; Schaefer, Rachel E M; Colgan, Sean P (2018) A Central Role for Heme Oxygenase-1 in the Control of Intestinal Epithelial Chemokine Expression. J Innate Immun 10:228-238
Curtis, Valerie F; Cartwright, Ian M; Lee, J Scott et al. (2018) Neutrophils as sources of dinucleotide polyphosphates and metabolism by epithelial ENPP1 to influence barrier function via adenosine signaling. Mol Biol Cell 29:2687-2699
Lee, J Scott; Wang, Ruth X; Alexeev, Erica E et al. (2018) Hypoxanthine is a checkpoint stress metabolite in colonic epithelial energy modulation and barrier function. J Biol Chem 293:6039-6051
Alexeev, Erica E; Lanis, Jordi M; Kao, Daniel J et al. (2018) Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. Am J Pathol 188:1183-1194
Chun, Carlene; Zheng, Leon; Colgan, Sean P (2017) Tissue metabolism and host-microbial interactions in the intestinal mucosa. Free Radic Biol Med 105:86-92
Glover, Louise E; Colgan, Sean P (2017) Epithelial Barrier Regulation by Hypoxia-Inducible Factor. Ann Am Thorac Soc 14:S233-S236
Kao, Daniel J; Saeedi, Bejan J; Kitzenberg, David et al. (2017) Intestinal Epithelial Ecto-5'-Nucleotidase (CD73) Regulates Intestinal Colonization and Infection by Nontyphoidal Salmonella. Infect Immun 85:
Taylor, Cormac T; Colgan, Sean P (2017) Regulation of immunity and inflammation by hypoxia in immunological niches. Nat Rev Immunol 17:774-785
Lanis, Jordi M; Kao, Daniel J; Alexeev, Erica E et al. (2017) Tissue metabolism and the inflammatory bowel diseases. J Mol Med (Berl) 95:905-913
Wang, Ruth X; Colgan, Sean P (2017) Special pro-resolving mediator (SPM) actions in regulating gastro-intestinal inflammation and gut mucosal immune responses. Mol Aspects Med 58:93-101

Showing the most recent 10 out of 31 publications