Regulatory T cells (Tregs) specified by the Forkhead transcription factor Foxp3 are important to suppress unwanted inflammatory responses in order to maintain immune homeostasis. The gut represents a specific microenvironment for Treg-mediated immune tolerance due to large amounts of antigens derived from food or microbiota, and proinflammatory cytokines produced by various immune cells. The aryl hydrocarbon receptor (Ahr) is an environmental sensor that detects not only xenobiotic ligands such as environmental pollutants (e.g., dioxin) but also physiological compounds generated by host cells, microbiota, and/or diet (e.g., amino acid tryptophan metabolites). The goal of the proposal is to understand the molecular regulation of Tregs by Ahr, a ligand-dependent transcription factor. Our preliminary data suggest that Ahr-expressing Tregs were preferentially enriched in the gut. Using an RNA-Seq approach, we showed that multiple genes that have been previously implicated in Treg cell development, maintenance, and function were perturbed by Ahr deficiency in Tregs. Using a T cell transfer model of colitis, we further showed that Tregs lacking expression of Ahr could not suppress disease in vivo. Using a combination of biochemical, molecular, and genetic approaches, in the proposal we will test the hypothesis that Ahr expression in Tregs plays a key role in gut immune homeostasis by regulating Treg cell development, maintenance, and/or function. Specifically, we will determine 1) the mechanism(s) underlying the enrichment of Ahr-expressing Tregs in the gut under the steady state; 2) the molecular mechanism(s) by which Ahr regulates expression of the genes involved in Treg development and maintenance; and 3) the in vivo role of Ahr in Tregs during gut inflammation and infection. These experiments will offer an opportunity to elucidate environmental impacts on immune tolerance via the Ahr-mediated pathway. Our study will provide novel cellular and molecular insights into the development and function of Tregs regulated by Ahr in a tissue- and cell-specific manner. Since Ahr is a ligand-dependent transcription factor and its activity can be modulated by small molecules, better understanding of the role of Ahr in Tregs may lead to development of novel therapeutic approaches by modulating Ahr expression and/or function in Tregs to treat autoimmunity and inflammation.

Public Health Relevance

Regulatory T cells (Tregs) play an important role in inflammation and autoimmunity. The proposed experiments will provide novel insights into the molecular mechanisms of action of the aryl hydrocarbon receptor (Ahr), an environmental sensor, in the regulation of Treg maintenance and function, and into the role of Ahr in colitis pathogenesis. Better understanding of Treg biology regulated by Ahr may eventually provide novel means to treat human inflammatory bowel disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK105562-10
Application #
9537466
Study Section
Cellular and Molecular Immunology - A Study Section (CMIA)
Program Officer
Perrin, Peter J
Project Start
2015-09-23
Project End
2020-08-31
Budget Start
2018-09-01
Budget End
2019-08-31
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Florida
Department
Microbiology/Immun/Virology
Type
Schools of Veterinary Medicine
DUNS #
969663814
City
Gainesville
State
FL
Country
United States
Zip Code
32611
Li, Shiyang; Bostick, John W; Ye, Jian et al. (2018) Aryl Hydrocarbon Receptor Signaling Cell Intrinsically Inhibits Intestinal Group 2 Innate Lymphoid Cell Function. Immunity 49:915-928.e5
Lorentsen, Kyle J; Cho, Jonathan J; Luo, Xiaoping et al. (2018) Bcl11b is essential for licensing Th2 differentiation during helminth infection and allergic asthma. Nat Commun 9:1679
Zhou, Sha; Qi, Qianqian; Wang, Xiaofan et al. (2018) SjHSP60 induces CD4+ CD25+ Foxp3+ Tregs via TLR4-Mal-drived production of TGF-? in macrophages. Immunol Cell Biol 96:958-968
Suo, Caixia; Fan, Zhiqin; Zhou, Liang et al. (2017) Perfluorooctane sulfonate affects intestinal immunity against bacterial infection. Sci Rep 7:5166
Ye, Jian; Qiu, Ju; Bostick, John W et al. (2017) The Aryl Hydrocarbon Receptor Preferentially Marks and Promotes Gut Regulatory T Cells. Cell Rep 21:2277-2290
Li, Shiyang; Bostick, John W; Zhou, Liang (2017) Regulation of Innate Lymphoid Cells by Aryl Hydrocarbon Receptor. Front Immunol 8:1909
Li, Shiyang; Heller, Jennifer J; Bostick, John W et al. (2016) Ikaros Inhibits Group 3 Innate Lymphoid Cell Development and Function by Suppressing the Aryl Hydrocarbon Receptor Pathway. Immunity 45:185-97
Banuelos, J; Shin, S; Cao, Y et al. (2016) BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis. Allergy 71:640-50
Zhou, Liang (2016) AHR Function in Lymphocytes: Emerging Concepts. Trends Immunol 37:17-31
Zhou, Sha; Jin, Xin; Chen, Xiaojun et al. (2015) Heat Shock Protein 60 in Eggs Specifically Induces Tregs and Reduces Liver Immunopathology in Mice with Schistosomiasis Japonica. PLoS One 10:e0139133

Showing the most recent 10 out of 23 publications