Whole body glucose metabolism is governed by both peripheral and central (brain) mechanisms. The ventromedial nucleus of the hypothalamus (VMH) in the brain plays an important role in glucose sensing and hypoglycemia-related adaptations of the autonomic nervous system. However, how intracellular signaling modalities within VMH neurons bring about physiological and pathological responses to the changing glucose environment remains elusive. Our preliminary data revealed a temporal relationship between VMH neuronal mitochondrial dynamics and phenotypic characteristics of glucose fluctuation-induced responses in mice. Our preliminary results suggest that mitochondrial proteins, including uncoupling protein 2 (UCP2) and Dynamin- related peptide 1 (DRP1) are involved in cellular adaptions of VMH neurons to glucose level alterations, and, that interference with these proteins in a VMH-specific manner affect whole body glucose metabolism. Because both of these proteins promoted mitochondrial fission in VMH neurons, we hypothesize that mitochondrial dynamics, with particular emphasis on mitochondrial fission, are crucial cellular biological processes in the VMH to control of whole body glucose metabolism. In this proposal, we aim to decipher mechanistic aspects of VMH mitochondrial dynamics in glucose control. Specifically, we hypothesize that UCP2 and DRP1 are important components in the central regulation of glucose metabolism. Their interaction is crucial to properly adjust VMH neuronal responses to shifts in glucose levels. We also predict that impaired glucose metabolism in diabetic mice is the consequence of increased fusion in VMH neurons. To test these hypotheses, we propose 3 Aims:
Aim 1 will test the hypothesis that UCP2 is sufficient and necessary in the VMH to regulate glucose metabolism.
Aim 2 will test the hypothesis that glucose-induced increased UCP2 induces mitochondrial fission mediated by DRP1 and this mechanism is critical in the central regulation of glucose metabolism.
Aim 3 will test the hypothesis that impaired glucose metabolism in diabetic mice is the consequence of increased mitochondrial fusion in VMH neurons and that interference with this mitochondrial mechanism in VMH neurons will improve whole body glucose metabolism in diabetic mice. The execution of these studies will deliver novel insights into central regulation of whole body glucose metabolism and offer novel avenues to combat diabetes by targeting brain mitochondrial dynamics.

Public Health Relevance

To understand the etiology of metabolic disorders, including type II diabetes, it is essential that we gain better insight into the mechanisms used by the central nervous system to regulate neuronal circuitry related to glucose metabolism. We have identified UCP2 and other mitochondrial proteins involved in mitochondrial dynamics including dynamin-related peptide 1 and mitofusin 2 as important proteins for the regulation of hypothalamic ventromedial glucose sensing neurons. To better understand their role in the central regulation of glucose metabolism is important to further dissect mechanistic events that contribute to the regulation of these VMH glucose-sensing neurons. The experiments proposed in this application will unmask the role of central mitochondrial dynamics in the central regulatio of glucose homeostasis and will help us to better develop strategy for the treatment of metabolic disorders such as type II diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK107293-02
Application #
9096080
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Hyde, James F
Project Start
2015-07-01
Project End
2019-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
2
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Yale University
Department
Obstetrics & Gynecology
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
Jin, Sungho; Diano, Sabrina (2018) Mitochondrial Dynamics and Hypothalamic Regulation of Metabolism. Endocrinology 159:3596-3604
Bruschetta, Giuseppe; Jin, Sungho; Kim, Jung Dae et al. (2018) Prolyl carboxypeptidase in Agouti-related Peptide neurons modulates food intake and body weight. Mol Metab 10:28-38
Santoro, Anna; Campolo, Michela; Liu, Chen et al. (2017) DRP1 Suppresses Leptin and Glucose Sensing of POMC Neurons. Cell Metab 25:647-660
Toda, Chitoku; Santoro, Anna; Kim, Jung Dae et al. (2017) POMC Neurons: From Birth to Death. Annu Rev Physiol 79:209-236
Kim, Jung Dae; Toda, Chitoku; Ramírez, Cristina M et al. (2017) Hypothalamic Ventromedial Lin28a Enhances Glucose Metabolism in Diet-Induced Obesity. Diabetes 66:2102-2111
Suyama, Shigetomo; Ralevski, Alexandra; Liu, Zhong-Wu et al. (2017) Plasticity of calcium-permeable AMPA glutamate receptors in Pro-opiomelanocortin neurons. Elife 6:
Toda, Chitoku; Kim, Jung Dae; Impellizzeri, Daniela et al. (2016) UCP2 Regulates Mitochondrial Fission and Ventromedial Nucleus Control of Glucose Responsiveness. Cell 164:872-83