? Iterative reconstruction algorithms that significantly improve image quality over filtered backprojection methods have been developed by us and others. However, the full potential of these algorithms have not yet been realized. For example, iterative reconstruction methods can incorporate sophisticated modeling of the expected image that is specific for classes of clinical applications, and use of iterative methods can substantially remove constraints on PET instrument designs (e.g., allow the use of non-standard detector geometries). The goal of this grant is to develop a theoretical framework that can be used in practice to obtain the optimum iterative reconstruction algorithm as well as the optimum PET instrument design for each clinical application and to validate the new approaches in order to attain the full potential of PET. The potential application of this work is enabled by the availability of high performance computers that allow the use of accurate and statistically sophisticated iterative reconstruction algorithms. We propose to incorporate stochastic models for the target and background as a major extension of our previous work. The new approach to the optimization of the reconstruction algorithm will use the initial noisy data set to estimate the resolution and the noise characteristics of the target and the background at each element of the image. Numerical observers will be used to analytically compute task-specific figures of merit. A spatially variant image prior model will then be designed to achieve the optimal lesion detection and quantitation across the whole region of interest. Finally, the theoretical results of the optimum reconstruction, combined with ensemble information of patients and of the disease pertaining to a specific organ, will be used to discover the optimal instrument design for each clinical task. We will study both whole-body PET systems and application specific PET systems with non-standard geometries (e.g., PET for imaging breast and prostate). All results will be validated using Monte Carlo simulations, phantom scans, and real patient data from a whole body scanner. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB000194-01A1
Application #
6611945
Study Section
Diagnostic Imaging Study Section (DMG)
Program Officer
Pastel, Mary
Project Start
2003-04-01
Project End
2007-01-31
Budget Start
2003-04-01
Budget End
2004-01-31
Support Year
1
Fiscal Year
2003
Total Cost
$278,996
Indirect Cost
Name
Lawrence Berkeley National Laboratory
Department
Type
Organized Research Units
DUNS #
078576738
City
Berkeley
State
CA
Country
United States
Zip Code
94720
Zhang, Xuezhu; Peng, Qiyu; Zhou, Jian et al. (2018) Lesion detection and quantification performance of the Tachyon-I time-of-flight PET scanner: phantom and human studies. Phys Med Biol 63:065010
Zhang, Xuezhu; Badawi, Ramsey D; Cherry, Simon R et al. (2018) Theoretical study of the benefit of long axial field-of-view PET on region of interest quantification. Phys Med Biol 63:135010
Gong, Kuang; Cheng-Liao, Jinxiu; Wang, Guobao et al. (2018) Direct Patlak Reconstruction From Dynamic PET Data Using the Kernel Method With MRI Information Based on Structural Similarity. IEEE Trans Med Imaging 37:955-965
Zhang, Xuezhu; Zhou, Jian; Cherry, Simon R et al. (2017) Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys Med Biol 62:2465-2485
Gong, Kuang; Zhou, Jian; Tohme, Michel et al. (2017) Sinogram Blurring Matrix Estimation From Point Sources Measurements With Rank-One Approximation for Fully 3-D PET. IEEE Trans Med Imaging 36:2179-2188
Wang, Guobao; Zhou, Jian; Yu, Zhou et al. (2017) Hybrid Pre-Log and Post-Log Image Reconstruction for Computed Tomography. IEEE Trans Med Imaging 36:2457-2465
Zhang, Mengxi; Zhou, Jian; Niu, Xiaofeng et al. (2017) Regularization parameter selection for penalized-likelihood list-mode image reconstruction in PET. Phys Med Biol 62:5114-5130
Gong, Kuang; Majewski, Stan; Kinahan, Paul E et al. (2016) Designing a compact high performance brain PET scanner-simulation study. Phys Med Biol 61:3681-97
Yang, Li; Wang, Guobao; Qi, Jinyi (2016) Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection. IEEE Trans Med Imaging 35:947-56
Hutchcroft, Will; Wang, Guobao; Chen, Kevin T et al. (2016) Anatomically-aided PET reconstruction using the kernel method. Phys Med Biol 61:6668-6683

Showing the most recent 10 out of 47 publications