This project is a competing continuation of our project entitled """"""""Parallel Magnetic Resonance Imaging: New Techniques and Technologies,"""""""" which yielded many of the seminal advances in highly accelerated parallel MRI, and demonstrated their use in imaging of the abdomen and the cardiovascular system. Our continuing project will apply these advances to the development and deployment of a rapid, simple, and comprehensive cardiac imaging protocol occupying a small number of breath-holds. We will also develop a novel goal-oriented user interface for rapid volumetric imaging, to reflect and extend the resulting simplification of workflow. Finally, we will develop the tools required to accomplish rapid volumetric cardiac imaging at high and ultrahigh field strength.

Public Health Relevance

This project is a competing continuation of our project entitled """"""""Parallel Magnetic Resonance Imaging: New Techniques and Technologies,"""""""" which produced many of the key advances in highly accelerated parallel MRI, and demonstrated their use in rapid imaging of the abdomen and the cardiovascular system. The focus of our continuing project will be to use parallel MRI to create a rapid and simple procedure for evaluating comprehensive cardiac heath in a mere few minutes. We will also develop the tools required to accomplish rapid cardiac imaging at high and ultrahigh field strength, where great diagnostic benefits are expected once key technological limitations have been addressed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB000447-10
Application #
8232947
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Liu, Guoying
Project Start
2002-04-15
Project End
2014-02-28
Budget Start
2012-03-01
Budget End
2014-02-28
Support Year
10
Fiscal Year
2012
Total Cost
$717,853
Indirect Cost
$289,680
Name
New York University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
121911077
City
New York
State
NY
Country
United States
Zip Code
10016
Ben-Eliezer, Noam; Sodickson, Daniel K; Shepherd, Timothy et al. (2016) Accelerated and motion-robust in vivo T2 mapping from radially undersampled data using bloch-simulation-based iterative reconstruction. Magn Reson Med 75:1346-54
Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K et al. (2016) Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency. Concepts Magn Reson Part B Magn Reson Eng 46:25-40
Feng, Li; Benkert, Thomas; Block, Kai Tobias et al. (2016) Compressed sensing for body MRI. J Magn Reson Imaging :
Kim, Sungheon G; Feng, Li; Grimm, Robert et al. (2016) Influence of temporal regularization and radial undersampling factor on compressed sensing reconstruction in dynamic contrast enhanced MRI of the breast. J Magn Reson Imaging 43:261-9
Feng, Li; Axel, Leon; Chandarana, Hersh et al. (2016) XD-GRASP: Golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775-88
Deniz, Cem M; Vaidya, Manushka V; Sodickson, Daniel K et al. (2016) Radiofrequency energy deposition and radiofrequency power requirements in parallel transmission with increasing distance from the coil to the sample. Magn Reson Med 75:423-32
Riley, Geoffrey M; McWalter, Emily J; Stevens, Kathryn J et al. (2015) MRI of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging 41:558-72
Rosenkrantz, Andrew B; Geppert, Christian; Grimm, Robert et al. (2015) Dynamic contrast-enhanced MRI of the prostate with high spatiotemporal resolution using compressed sensing, parallel imaging, and continuous golden-angle radial sampling: preliminary experience. J Magn Reson Imaging 41:1365-73
Ben-Eliezer, Noam; Sodickson, Daniel K; Block, Kai Tobias (2015) Rapid and accurate T2 mapping from multi-spin-echo data using Bloch-simulation-based reconstruction. Magn Reson Med 73:809-17
Knoll, Florian; Raya, José G; Halloran, Rafael O et al. (2015) A model-based reconstruction for undersampled radial spin-echo DTI with variational penalties on the diffusion tensor. NMR Biomed 28:353-66

Showing the most recent 10 out of 43 publications