Over the past 10 years experiments utilizing transgenic and knockout mice have significantly advanced broad areas of cardiovascular disease research. The vast majority of such research has employed ex vivo methods for assessing the results of gene manipulation (phenotyping) such as immunostaining tissue samples, and, for heart function, performing catheter-based measurements of left-ventricular (LV) pressure in isolated Langendorff-perfused hearts. For studies of cardiac function in particular, noninvasive imaging offers the possibility of making measurements that directly reflect complex in vivo physiology. Basic echocardiographic and MRI techniques have already been developed and applied to mice, and MRI in particular, due to its versatility and accuracy, shows great promise. We propose to develop advanced MRI methods for imaging myocardial infarction (MI) and regional intramyocardial function in mice and to apply these methods to the study of LV dysfunction after MI. Specifically, we will use novel displacement-encoded MRI techniques to study myocardial dysfunction in the settings of acute and chronic MI, focusing on the role of excess nitric oxide (NO) derived from the inducible form of nitric oxide synthase (iNOS). While these studies focus on basic mechanisms, they are clinically relevant because post-MI LV dysfunction and remodeling are a major cause of mortality in the United States. Understanding the basic mechanisms underlying LV dysfunction and remodeling may lead to drug development and improved treatment. Accordingly, our specific aims are 1. To develop novel MRI methods for post-MI mouse heart imaging that measure two-dimensional (2D) and 3D intramyocardial tissue displacement and strain in phase-reconstructed images and simultaneously depict the area of myocardial infarction as a region of hyper enhancement in contrast-enhanced magnitude-reconstructed images. 2. To develop image analysis techniques to automatically segment the myocardium, detect the area of delayed hyper enhancement, and compute measures of myocardial function localized to the infarcted, adjacent, and remote regions. 3. To use MRI, including the methods developed in Aims 1 and 2, to elucidate the roles of nitric oxide (NO) and the inducible form of nitric oxide synthase (iNOS) on post-Ml LV dysfunction using knockout mice and direct gene transfer methods.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB001763-04
Application #
7100239
Study Section
Special Emphasis Panel (ZRG1-EB (52))
Program Officer
Mclaughlin, Alan Charles
Project Start
2003-09-05
Project End
2008-07-31
Budget Start
2006-08-01
Budget End
2008-07-31
Support Year
4
Fiscal Year
2006
Total Cost
$326,071
Indirect Cost
Name
University of Virginia
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Cui, Sophia X; Epstein, Frederick H (2018) MRI assessment of coronary microvascular endothelial nitric oxide synthase function using myocardial T1 mapping. Magn Reson Med 79:2246-2253
Yang, Yang; Zhao, Li; Chen, Xiao et al. (2018) Reduced field of view single-shot spiral perfusion imaging. Magn Reson Med 79:208-216
Zorach, Benjamin; Shaw, Peter W; Bourque, Jamieson et al. (2018) Quantitative cardiovascular magnetic resonance perfusion imaging identifies reduced flow reserve in microvascular coronary artery disease. J Cardiovasc Magn Reson 20:14
Auger, Daniel A; Bilchick, Kenneth C; Gonzalez, Jorge A et al. (2017) Imaging left-ventricular mechanical activation in heart failure patients using cine DENSE MRI: Validation and implications for cardiac resynchronization therapy. J Magn Reson Imaging 46:887-896
Chen, Xiao; Yang, Yang; Cai, Xiaoying et al. (2016) Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging. J Cardiovasc Magn Reson 18:38
Naresh, Nivedita K; Butcher, Joshua T; Lye, Robert J et al. (2016) Cardiovascular magnetic resonance detects the progression of impaired myocardial perfusion reserve and increased left-ventricular mass in mice fed a high-fat diet. J Cardiovasc Magn Reson 18:53
Epstein, Frederick H; Vandsburger, Moriel (2016) Illuminating the Path Forward in Cardiac Regeneration Using Strain Magnetic Resonance Imaging. Circ Cardiovasc Imaging 9:
Naresh, Nivedita K; Chen, Xiao; Moran, Eric et al. (2016) Repeatability and variability of myocardial perfusion imaging techniques in mice: Comparison of arterial spin labeling and first-pass contrast-enhanced MRI. Magn Reson Med 75:2394-405
Haggerty, Christopher M; Mattingly, Andrea C; Kramer, Sage P et al. (2015) Left ventricular mechanical dysfunction in diet-induced obese mice is exacerbated during inotropic stress: a cine DENSE cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 17:75
Mehta, Bhairav B; Auger, Daniel A; Gonzalez, Jorge A et al. (2015) Detection of elevated right ventricular extracellular volume in pulmonary hypertension using Accelerated and Navigator-Gated Look-Locker Imaging for Cardiac T1 Estimation (ANGIE) cardiovascular magnetic resonance. J Cardiovasc Magn Reson 17:110

Showing the most recent 10 out of 44 publications