The proposed research is focused on the development of two separate time domain magnetic resonance spectrometers: one at a frequency of 140 GHz (1H frequency of 212 MHz, magnetic field of 5T) and the second at a frequency of 250 GHz (1H frequency of 380 MHz, magnetic field of 9T). These spectrometers will be the world's first high power time domain spectrometers operating at frequencies above 100 GHz where modern magnetic resonance experimental research is conducted. The application will be in time domain dynamic nuclear polarization/nuclear magnetic resonance (DNP/NMR) and EPR research. Currently, the full implementation of time domain magnetic resonance techniques at high frequency is restricted by the paucity of high frequency microwave amplifiers. The advent of high frequency microwave amplifiers will permit the development of polarization transfer methods based on coherent processes the integrated solid effect, the dressed state solid effect, electron-nuclear Hartmann-Hahn cross polarization, etc. -- which are more favorable at high magnetic fields. Gyroamplifiers are essential for the implementation of these time domain experiments. Time domain EPR spectroscopy will also benefit greatly from this new instrumentation. The higher frequency can offer increased g-factor resolution for spectra consisting of overlapping powder patterns, the more precise measurements of the relative orientation of g-, hyperfine and dipolar tensors, and it will further simplify the acquisition and interpretation of pulsed ENDOR spectra. Accordingly, the first goal of this proposal is to integrate an existing 820W, 140 GHz gyroamplifier with an existing NMR and EPR spectrometer and to obtain first demonstrations of the spectrometer in high power DNP/NMR and EPR research. We will use a versatile low temperature spectrometer designed for the study of DNP/NMR at 212 MHz and EPR at 140 GHz. We have recently successfully operated this spectrometer using a low power (120 mW) source, but must develop and implement the components needed for its use with the high power gyroamplifier source. The second goal is to design and demonstrate improved resonators for DNP/NMR and EPR, such as photonic crystal resonators, and to develop the necessary ancillary THz components for the NMR application, such as switches, circulators, transmission lines, etc. for THz DNP/NMR and EPR experiments. Because of the scarcity and high cost of commercial instrumentation at high frequencies, it is crucial to develop these components to efficiently transmit and apply the available coherent radiation. The third specific aim is to complete the development of an existing 14 W, 250 GHz gyroamplifier and to apply that amplifier to pulsed DNP/NMR and EPR research. We first plan to finish the development of this amplifier at a power level of > 100 W using improved gyroamplifier designs in the first year of the proposal. Once the 250 GHz gyroamplifier is fully developed, we will apply it to pulsed DNP/NMR and EPR. The resultant system will then be the highest frequency high power DNP/NMR and EPR spectrometer in the world.

Public Health Relevance

The proposed research is focused on the development of time domain magnetic resonance spectrometers: one at a frequency of 140 GHz (1H frequency of 212 MHz, magnetic field of 5T) and the second at a frequency of 250 GHz (1H frequency of 380 MHz, magnetic field of 9T). These spectrometers will be the world's first high power time domain spectrometers operating at higher magnetic fields where modern EPR and DNP/NMR experimental research is conducted. The improved techniques will lead to increased understanding of the structure of amyloid and membrane proteins which is key to understanding their role in biological systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
4R01EB001965-13
Application #
9088457
Study Section
Enabling Bioanalytical and Imaging Technologies Study Section (EBIT)
Program Officer
Sastre, Antonio
Project Start
2003-05-01
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
13
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Massachusetts Institute of Technology
Department
Type
Schools of Arts and Sciences
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
Nanni, Emilio A; Jawla, Sudheer; Lewis, Samantha M et al. (2017) Photonic-band-gap gyrotron amplifier with picosecond pulses. Appl Phys Lett 111:233504
Soane, Alexander V; Shapiro, Michael A; Jawla, Sudheer et al. (2017) Operation of a 140 GHz Gyro-amplifier using a Dielectric-loaded, Sever-less Confocal Waveguide. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 45:2835-2840
Ni, Qing Zhe; Yang, Fengyuan; Can, Thach V et al. (2017) In Situ Characterization of Pharmaceutical Formulations by Dynamic Nuclear Polarization Enhanced MAS NMR. J Phys Chem B 121:8132-8141
Soane, Alexander V; Shapiro, Michael A; Stephens, Jacob C et al. (2017) Theory of Linear and Nonlinear Gain in a Gyroamplifier using a Confocal Waveguide. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 45:2438-2449
Schaub, S C; Shapiro, M A; Temkin, R J (2016) Simple Expressions for the Design of Linear Tapers in Overmoded Corrugated Waveguides. J Infrared Millim Terahertz Waves 37:100-110
Kowalski, Elizabeth J; Shapiro, Michael A; Temkin, Richard J (2014) Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 42:29-37
Michaelis, Vladimir K; Ong, Ta-Chung; Kiesewetter, Matthew K et al. (2014) Topical Developments in High-Field Dynamic Nuclear Polarization. Isr J Chem 54:207-221
Jawla, Sudheer K; Shapiro, Michael A; Idei, Hiroshi et al. (2014) Corrugated Waveguide Mode Content Analysis Using Irradiance Moments. IEEE Trans Plasma Sci IEEE Nucl Plasma Sci Soc 42:3358-3364
Lewis, Samantha M; Nanni, Emilio A; Temkin, Richard J (2014) Direct Machining of Low-Loss THz Waveguide Components With an RF Choke. IEEE Microw Wirel Compon Lett 24:842-844
Jawla, Sudheer; Ni, Qing Zhe; Barnes, Alexander et al. (2013) Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy. J Infrared Millim Terahertz Waves 34:42-52

Showing the most recent 10 out of 38 publications