Noninvasive methods for measuring myocardial viscoelasticity are needed to assist with evaluation of heart function. The long-term goal of this program is to noninvasively measure and image heart wall mechanical properties with high accuracy and precision. For this purpose, we have developed shear wave dispersion ultrasound vibrometry (SDUV). The availability of noninvasive quantitative heart wall viscoelasticity measurements will support clinical evaluation and population studies. Toward this goal, we have developed: methods to measure shear modulus using MRI (Science 269:1854-1857, 1995), a new imaging method that uses the harmonic vibration of tissue induced by ultrasound radiation pressure (Science 280, 82-85, 1998), theory for harmonic vibration imaging (Proc Natl Acad Sci USA 96:6603-6608, 1999) and a theory for fundamental parameters of radiation pressure (Phys. Rev E 71, 2005). In addition, we developed an inverse solution to this problem using FEM (J Appl Phys 101, 2007). This outstanding record of achievements leads to the following specific goals for the next funding cycle of this program of research: 1) develop advanced theories for solving the very complex inverse problem of determining mechanical properties of the left ventricular myocardium from shear wave properties, 2) use ultrasonic radiation force to induce shear-waves into the heart wall of instrumented open chest and closed chest animals and validate SDUV viscoelastic moduli by independent methods, 3) implement SDUV to characterize the complex shear modulus with high temporal and spatial resolution in closed chest swine with hypertension-induced increased left ventricular/myocardial stiffness and fibrosis, and 4) in hypertensive patients with heart failure and preserved ejection fraction, we will make noninvasive SDUV measurements of myocardial viscoelastic properties, and we will correlate these measurements with catheter-proven increased ventricular/myocardial stiffness and standard echocardiographic measures of diastolic dysfunction. Successful completion of this program will result in a scientific and technological advancement in the field of ultrasonic imaging, providing the cardiologist with a direct quantitative measurement of the regional viscous and elastic compliance of the heart wall. Measurements will be fast enough to be incorporated in the typical cardiac ultrasound examination and allow evaluations at rest and during physiologic or pharmacologic interventions. In this cardiology evaluation of SDUV, we will focus our attention on hypertensive patients with diastolic heart failure as one of the largest populations that may benefit from direct measurements of myocardial viscoelastic properties. We anticipate the technology will provide quantitative measurements of myocardial properties with a wide variety of applications such as ischemic heart disease, cardiomyopathies and heart transplant.

Public Health Relevance

Successful completion of this program will result in a noninvasive, quantitative method for measuring viscoelastic properties of the myocardium that would be a software addition to the current suite of cardiac ultrasound instruments providing the cardiologist with a quantitative measurement of the regional viscous and elastic compliance of the heart wall. Measurements will be fast enough to allow evaluations at rest during routine cardiac ultrasound evaluation as well as during physiologic or pharmacologic interventions.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Liu, Christina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic, Rochester
United States
Zip Code
Zhao, Heng; Chen, Jun; Meixner, Duane D et al. (2014) Noninvasive assessment of liver fibrosis using ultrasound-based shear wave measurement and comparison to magnetic resonance elastography. J Ultrasound Med 33:1597-604
Song, Pengfei; Manduca, Armando; Zhao, Heng et al. (2014) Fast shear compounding using robust 2-D shear wave speed calculation and multi-directional filtering. Ultrasound Med Biol 40:1343-55
Nabavizadeh, Alireza; Greenleaf, James F; Fatemi, Mostafa et al. (2014) Optimized shear wave generation using hybrid beamforming methods. Ultrasound Med Biol 40:188-99
Warner, James E; Diaz, Manuel I; Aquino, Wilkins et al. (2014) Inverse Material Identification in Coupled Acoustic-Structure Interaction using a Modified Error in Constitutive Equation Functional. Comput Mech 54:645-659
Pislaru, Cristina; Urban, Matthew W; Pislaru, Sorin V et al. (2014) Viscoelastic properties of normal and infarcted myocardium measured by a multifrequency shear wave method: comparison with pressure-segment length method. Ultrasound Med Biol 40:1785-95
Zhao, Heng; Song, Pengfei; Meixner, Duane D et al. (2014) External vibration multi-directional ultrasound shearwave elastography (EVMUSE): application in liver fibrosis staging. IEEE Trans Med Imaging 33:2140-8
Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V (2014) Wave propagation of myocardial stretch: correlation with myocardial stiffness. Basic Res Cardiol 109:438
Urban, Matthew W; Pislaru, Cristina; Nenadic, Ivan Z et al. (2013) Measurement of viscoelastic properties of in vivo swine myocardium using lamb wave dispersion ultrasound vibrometry (LDUV). IEEE Trans Med Imaging 32:247-61
Sarvazyan, Armen P; Urban, Matthew W; Greenleaf, James F (2013) Acoustic waves in medical imaging and diagnostics. Ultrasound Med Biol 39:1133-46
Zheng, Yi; Yao, Aiping; Chen, Shigao et al. (2013) Ultrasound vibrometry using orthogonal- frequency-based vibration pulses. IEEE Trans Ultrason Ferroelectr Freq Control 60:2359-70

Showing the most recent 10 out of 39 publications