The goal of this project is to improve magnetic resonance imaging (MRI) for the detection and treatment of osteoarthritis (OA). Current routine OA imaging methods only show the late changes of the disease after irreversible tissue loss has occurred. The techniques developed here will allow investigators and clinicians to track progress of the disease before tissue loss has occurred, leading to better treatments of joint injuries, faster drug discovery, and improved scientific understanding of OA progression. Relevance: MRI is widely regarded as the most sensitive method for assessing early changes due to OA. Many different MRI methods have been studied, including methods sensitive to potentially reversible changes occurring early in the disease process, but not all are practical for routine exams. Our research will develop the hardware and software necessary for the routine assessment of the earliest changes of the disease in cartilage and other joint tissues. This also will enable development and testing of treatments for this disorder. Approach: The proposed effort addresses the technical challenges to using MRI methods that are sensitive to early changes in OA. Our approach is to develop new cutting-edge methods to make MRI more sensitive to the morphological and biochemical study of OA. Specifically, we aim to (1) develop more sensitive methods of 3D imaging for quantifying the morphology of the whole knee joint, including both cartilage and other important structures, (2) develop methods for quantitative 3D imaging of cartilage glycosaminoglycan content with sodium MRI and, (3) demonstrate, in a clinical study, that our new methods are highly sensitive to early, potentially reversible changes of OA. At the end of the funding period, we will have developed and validated methods to efficiently study the progression of OA in order to improve clinical outcomes, aid development of disease-modifying therapies, and improve scientific understanding of OA.

Public Health Relevance

Osteoarthritis is a common, debilitating disorder without an effective disease-modifying treatment. Magnetic resonance imaging (MRI) is the most accurate non-invasive method of assessing early disease changes caused by osteoarthritis. This research will develop advanced MRI methods that are sensitive to early osteoarthritic changes for improved clinical outcomes, drug development, and understanding of the disease process.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB002524-08
Application #
8246963
Study Section
Special Emphasis Panel (ZRG1-MEDI-S (09))
Program Officer
Liu, Guoying
Project Start
2003-09-20
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
8
Fiscal Year
2012
Total Cost
$502,243
Indirect Cost
$165,062
Name
Stanford University
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Monu, U D; Jordan, C D; Samuelson, B L et al. (2017) Cluster analysis of quantitative MRI T2 and T1? relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis Cartilage 25:513-520
Sveinsson, B; Chaudhari, A S; Gold, G E et al. (2017) A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging 38:63-70
Chaudhari, Akshay S; Sveinsson, Bragi; Moran, Catherine J et al. (2017) Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med 78:2136-2148
Chaudhari, Akshay S; Black, Marianne S; Eijgenraam, Susanne et al. (2017) Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J Magn Reson Imaging :
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Kogan, Feliks; Stafford, Randall B; Englund, Erin K et al. (2017) Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. NMR Biomed 30:
Kogan, Feliks; Fan, Audrey P; McWalter, Emily J et al. (2017) PET/MRI of metabolic activity in osteoarthritis: A feasibility study. J Magn Reson Imaging 45:1736-1745
Pappas, George P; Vogelsong, Melissa A; Staroswiecki, Ernesto et al. (2016) Magnetic Resonance Imaging of Asymptomatic Knees in Collegiate Basketball Players: The Effect of One Season of Play. Clin J Sport Med 26:483-489
Wentland, Andrew L; McWalter, Emily J; Pal, Saikat et al. (2015) Muscle velocity and inertial force from phase contrast MRI. J Magn Reson Imaging 42:526-32
Riley, Geoffrey M; McWalter, Emily J; Stevens, Kathryn J et al. (2015) MRI of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging 41:558-72

Showing the most recent 10 out of 92 publications