Osteoarthritis (OA) is the leading cause of disability worldwide. The inability of non-invasive techniques to quantify disease progression has limited understanding of the pathogenesis of OA. While numerous magnetic resonance imaging (MRI) methods have been proposed for imaging OA, analysis is often limited to a single tissue or performed using subjective scoring systems. We propose advanced three-dimensional MRI methods as well as advanced analysis tools to quantitatively study the spatial and temporal progression of OA across different tissues in the knee joint. This work will lead to a new understanding of OA pathogenesis by revealing relationships between changes in multiple tissues of the entire joint over time. This project aims to develop 3D imaging tools based on MRI to sensitively track changes of OA in all joint tissues simultaneously.
Our specific aims are to (1 develop a robust ultra-short echo time based quantitative DESS method to obtain high-resolution 3D maps of apparent diffusion coefficient (ADC), T2 and T2* in multiple joint tissues, (2) Improve the signal and resolution of whole-joint sodium MRI at 3T using a novel phased array coil, (3) Develop and validate novel 3D analysis tools that will allow us to quantify changes in knee joint tissues spatially and over time and (4) Validate the ability of our protocol and analysis tools to quantitatively detect changes over time in the knees of subjects with OA of the knee. The innovation of this work lies in the development of novel imaging and analysis techniques that simultaneously offer quantitative measures of tissue integrity in cartilage, meniscus, synovium, and bone marrow. This novel data acquisition will be paired with an innovative three-dimensional analysis approach that will allow quantitative assessment of multiple joint tissues at a single time point and over time. The significance of this work is that e will be able to sensitively and quantitatively track changes of OA over time with accurate registration of multiple joint tissues. This will lead to new insights into OA pathogenesis and progression, as we will be able to relate changes in adjacent joint tissues and across time in subjects with OA.

Public Health Relevance

Osteoarthritis affects more than half of the population during their lives and is the leading cause of disability worldwide. Diagnostic imaging of osteoarthritis s often limited to x-ray, but more sensitive and specific imaging is a critical need for development of disease-modifying treatments. This work aims to develop novel 3D imaging approaches using magnetic resonance imaging (MRI), and couple these with three-dimensional analysis that can be used to quantitatively assess joint health across different tissues in osteoarthritis.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Liu, Guoying
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Medicine
United States
Zip Code
Monu, U D; Jordan, C D; Samuelson, B L et al. (2017) Cluster analysis of quantitative MRI T2 and T1? relaxation times of cartilage identifies differences between healthy and ACL-injured individuals at 3T. Osteoarthritis Cartilage 25:513-520
Sveinsson, B; Chaudhari, A S; Gold, G E et al. (2017) A simple analytic method for estimating T2 in the knee from DESS. Magn Reson Imaging 38:63-70
Chaudhari, Akshay S; Sveinsson, Bragi; Moran, Catherine J et al. (2017) Imaging and T2 relaxometry of short-T2 connective tissues in the knee using ultrashort echo-time double-echo steady-state (UTEDESS). Magn Reson Med 78:2136-2148
Chaudhari, Akshay S; Black, Marianne S; Eijgenraam, Susanne et al. (2017) Five-minute knee MRI for simultaneous morphometry and T2 relaxometry of cartilage and meniscus and for semiquantitative radiological assessment using double-echo in steady-state at 3T. J Magn Reson Imaging :
Kogan, Feliks; Hargreaves, Brian A; Gold, Garry E (2017) Volumetric multislice gagCEST imaging of articular cartilage: Optimization and comparison with T1rho. Magn Reson Med 77:1134-1141
Kogan, Feliks; Stafford, Randall B; Englund, Erin K et al. (2017) Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. NMR Biomed 30:
Kogan, Feliks; Fan, Audrey P; McWalter, Emily J et al. (2017) PET/MRI of metabolic activity in osteoarthritis: A feasibility study. J Magn Reson Imaging 45:1736-1745
Pappas, George P; Vogelsong, Melissa A; Staroswiecki, Ernesto et al. (2016) Magnetic Resonance Imaging of Asymptomatic Knees in Collegiate Basketball Players: The Effect of One Season of Play. Clin J Sport Med 26:483-489
Wentland, Andrew L; McWalter, Emily J; Pal, Saikat et al. (2015) Muscle velocity and inertial force from phase contrast MRI. J Magn Reson Imaging 42:526-32
Riley, Geoffrey M; McWalter, Emily J; Stevens, Kathryn J et al. (2015) MRI of the hip for the evaluation of femoroacetabular impingement; past, present, and future. J Magn Reson Imaging 41:558-72

Showing the most recent 10 out of 92 publications