Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a critical tool in the medical and scientific communities. Despite the indispensable role of the BOLD fMRI technique in mapping human brain function, its physiological sources are not well known because the BOLD effect has a complex dependence on many factors including cerebral blood flow (CBF), cerebral blood volume (CBV), and cerebral metabolic rate of O2 consumption (CMRO2). Thus, it is imperative to first perform an in-depth examination of the physiological origins of fMRI signals in order to utilize the fullest capabilities of the technique. During the last grant period, we investigated the spatial specificity of hemodynamic responses, characterized the physiological source of spin-echo BOLD and diffusion fMRI signals, and established a novel approach to maintain evoked neural activity and metabolic responses with negligible functional CBF and CBV changes. In this competitive renewal application, we aim to further elucidate the sources of both BOLD and CBV fMRI responses using a well-established animal model, since its neural properties are similar to humans (e.g., existence of visual columns and retinotopic organization). Our detailed goals are 1) to determine contributions from various physiological sources of the commonly-observed post-stimulus BOLD undershoot in order to test the hypothesis that the post-stimulus BOLD undershoot has major contributions from sustained oxygen consumption changes, 2) to determine specificity to sites of neural activity for the late CBV response vs. the early CBV response in order to test the hypothesis that the late response has improved spatial specificity, 3) to determine relationships between changes in CBF, arterial CBV, and venous CBV during increased neural activity and hypercapnia in order to test the hypothesis that the current assumptions for quantification of CMRO2 changes are not valid, and 4) to determine the impact of anesthesia on neural activity-induced hemodynamic responses in order to test the hypothesis that conclusions drawn from studies of anesthetized animals can be used to explain awake-state functional data. The long-term goal of these investigations is to determine the detailed physiological mechanisms responsible for BOLD fMRI responses, and the time-dependent spatial specificity of various fMRI signals. These investigations involving fMRI and physiology measurements will provide an understanding of the spatiotemporal relationships between BOLD, CBF, arterial blood volume, and venous blood volume during neural activation. Consequently, BOLD signals can be interpreted and quantified as more meaningful physiological parameters in normal subjects and patients.

Public Health Relevance

Blood oxygenation level dependent (BOLD) fMRI is a critical tool in the medical and scientific communities, but its physiological sources are not well known. Proposed investigations aim to interpret and quantify the commonly-used BOLD functional MRI signals as meaningful physiological parameters in normal subjects and patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB003375-14
Application #
8461070
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Liu, Guoying
Project Start
1999-05-15
Project End
2014-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
14
Fiscal Year
2013
Total Cost
$286,388
Indirect Cost
$82,445
Name
University of Pittsburgh
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Poplawsky, Alexander John; Kim, Seong-Gi (2014) Layer-dependent BOLD and CBV-weighted fMRI responses in the rat olfactory bulb. Neuroimage 91:237-51
Zong, Xiaopeng; Lee, Juyoung; John Poplawsky, Alexander et al. (2014) Compressed sensing fMRI using gradient-recalled echo and EPI sequences. Neuroimage 92:312-21
Kim, Tae; Shin, Wanyong; Kim, Seong-Gi (2014) Fast magnetization transfer and apparent T1 imaging using a short saturation pulse with and without inversion preparation. Magn Reson Med 71:1264-71
Zong, Xiaopeng; Wang, Ping; Kim, Seong-Gi et al. (2014) Sensitivity and source of amine-proton exchange and amide-proton transfer magnetic resonance imaging in cerebral ischemia. Magn Reson Med 71:118-32
Vazquez, Alberto L; Fukuda, Mitsuhiro; Crowley, Justin C et al. (2014) Neural and hemodynamic responses elicited by forelimb- and photo-stimulation in channelrhodopsin-2 mice: insights into the hemodynamic point spread function. Cereb Cortex 24:2908-19
Kim, Seong-Gi; Harel, Noam; Jin, Tao et al. (2013) Cerebral blood volume MRI with intravascular superparamagnetic iron oxide nanoparticles. NMR Biomed 26:949-62
Jin, Tao; Kim, Seong-Gi (2013) Characterization of non-hemodynamic functional signal measured by spin-lock fMRI. Neuroimage 78:385-95
Jin, Tao; Wang, Ping; Zong, Xiaopeng et al. (2013) MR imaging of the amide-proton transfer effect and the pH-insensitive nuclear overhauser effect at 9.4 T. Magn Reson Med 69:760-70
Fukuda, Mitsuhiro; Vazquez, Alberto L; Zong, Xiaopeng et al. (2013) Effects of the ??-adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. Eur J Neurosci 37:80-95
Moon, Chan Hong; Fukuda, Mitsuhiro; Kim, Seong-Gi (2013) Spatiotemporal characteristics and vascular sources of neural-specific and -nonspecific fMRI signals at submillimeter columnar resolution. Neuroimage 64:91-103

Showing the most recent 10 out of 50 publications