Tissue engineering approaches for driving stem cells toward spatially-organized multi-tissue units of the musculoskeletal system, such as muscle-tendon-bone (MTB), will require spatial control of differentiative cues provided by various components of tissue-engineered constructs, including their: biochemical elements;scaffold material composition and structure;and, biomechanical interactions. Current toolsets to aid in the early stages of discovery, design, and implementation of such complex, multi-variable constructs are either non- existent or severely limited in their capabilities to incorporate spatial control of those biochemical elements provided by exogenous paracrine signaling factors (PSFs). To address this need, we propose a novel PSF biopatterning technology that will enable the creation of persistent, spatially-defined patterns of PSFs organized in multiple neighboring regions of a scaffold, where each region targets a different phenotype to be induced. This capability will be unique because it will enable an exogenous or endogenous stem cell population exposed to a PSF-patterned construct to be driven toward multiple differentiative fates simultaneously in register to these patterns, at sub-millimeter resolution, to form neighboring multi-phenotype groupings within the same construct, both in vitro and in vivo. Pattern designs for an MTB will first be determined with the aid of a systematic design methodology applied to in vitro studies to identify a minimum set of spatially-patterned PSF cues out of a very large number of design possibilities, and then the resulting highest ranking designs will be validated in vivo for driving tissue phenotype formation in an ectopic subcutaneous mouse model. As an additional in vivo validation PSF patterned constructs will be implanted into a mouse Achilles tendon wound model to initiate site-specific host response, and histologically assessed for tissue phenotype expression in register to patterns applied.

Public Health Relevance

New tissue engineering therapies are needed to address the growing demand to repair multi-tissue structures of the musculoskeletal system, such as interconnected bone-tendon-muscle units that are diseased or injured. This becomes an even greater challenge because of the need to spatially control multiple differentiation fates simultaneously, including multi-unit tissue interfaces, within the same intercommunicating pericellular environment. There is an unmet need for new tissue-engineered construct technologies and design methodologies that will enable a stem cell population to be driven toward neighboring regions of different differentiation fates in each region, in vitro and in vivo. We propose to develop and demonstrate a spatial patterning methodology that uses a limited number of exogenous signaling molecules, patterned in scaffolds, to direct stem cells in the musculoskeletal system down multiple neighboring and intercommunicating differentiation fates as a first order model of multi-tissue formation and interaction. Engineered spatial patterning will provide new insights about multi-tissue formation, with the long-term goal to use patterned constructs to improve clinical outcomes of musculoskeletal-related treatments, which represents an estimated annual direct and indirect cost of $510 billion, in terms of 2004 dollars, or 3.1 % of the GDP in the US alone.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB004343-07
Application #
8310186
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Hunziker, Rosemarie
Project Start
2005-05-01
Project End
2014-08-31
Budget Start
2012-09-01
Budget End
2013-08-31
Support Year
7
Fiscal Year
2012
Total Cost
$548,338
Indirect Cost
$152,872
Name
Carnegie-Mellon University
Department
Engineering (All Types)
Type
Schools of Engineering
DUNS #
052184116
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Huh, Seungil; Ker, Dai Fei Elmer; Bise, Ryoma et al. (2011) Automated mitosis detection of stem cell populations in phase-contrast microscopy images. IEEE Trans Med Imaging 30:586-96
Ker, Elmer D F; Nain, Amrinder S; Weiss, Lee E et al. (2011) Bioprinting of growth factors onto aligned sub-micron fibrous scaffolds for simultaneous control of cell differentiation and alignment. Biomaterials 32:8097-107
Ker, Elmer D F; Chu, Bur; Phillippi, Julie A et al. (2011) Engineering spatial control of multiple differentiation fates within a stem cell population. Biomaterials 32:3413-22
Yin, Zhaozheng; Ker, Dai Fei Elmer; Kanade, Takeo (2011) Restoring DIC microscopy images from multiple shear directions. Inf Process Med Imaging 22:384-97
Ker, Dai Fei Elmer; Weiss, Lee E; Junkers, Silvina N et al. (2011) An engineered approach to stem cell culture: automating the decision process for real-time adaptive subculture of stem cells. PLoS One 6:e27672
Miller, Eric D; Li, Kang; Kanade, Takeo et al. (2011) Spatially directed guidance of stem cell population migration by immobilized patterns of growth factors. Biomaterials 32:2775-85
Cooper, Gregory M; Miller, Eric D; Decesare, Gary E et al. (2010) Inkjet-based biopatterning of bone morphogenetic protein-2 to spatially control calvarial bone formation. Tissue Eng Part A 16:1749-59
Smith, J D; Melhem, M E; Magge, K T et al. (2007) Improved growth factor directed vascularization into fibrin constructs through inclusion of additional extracellular molecules. Microvasc Res 73:84-94
Chakraborty, Subhasish K; Fitzpatrick, James A J; Phillippi, Julie A et al. (2007) Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett 7:2618-26